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1

Getting Started with the 
Curve Fitting Toolbox

This chapter describes a particular example in detail to help you get started with the Curve Fitting 
Toolbox. In this example, you will fit census data to several toolbox library models, find the best fit, 
and extrapolate the best fit to predict the US population in future years. In doing so, the basic steps 
involved in any curve fitting scenario are illustrated. These steps include

What Is the Curve Fitting 
Toolbox? (p. 1-2)

The toolbox and the kinds of tasks it can perform

Opening the Curve Fitting 
Tool (p. 1-4)

The Curve Fitting Tool is the main toolbox interface.

Importing the Data (p. 1-5) The data must exist as vectors in the MATLAB workspace. After 
importing, you can view the data, mark data points to be excluded 
from the fit, and smooth the data.

Fitting the Data (p. 1-7) Explore various parametric and nonparametric fits, and compare fit 
results graphically and numerically.

Analyzing the Fit (p. 1-17) Evaluate (interpolate or extrapolate), differentiate, or integrate the fit.

Saving Your Work (p. 1-19) Save your work for documentation purposes or for later analysis.
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What Is the Curve Fitting Toolbox?
The Curve Fitting Toolbox is a collection of graphical user interfaces (GUIs) 
and M-file functions built on the MATLAB® technical computing environment. 
The toolbox provides you with these main features:

• Data preprocessing such as sectioning and smoothing

• Parametric and nonparametric data fitting:

- You can perform a parametric fit using a toolbox library equation or using 
a custom equation. Library equations include polynomials, exponentials, 
rationals, sums of Gaussians, and so on. Custom equations are equations 
that you define to suit your specific curve fitting needs.

- You can perform a nonparametric fit using a smoothing spline or various 
interpolants.

• Standard linear least squares, nonlinear least squares, weighted least 
squares, constrained least squares, and robust fitting procedures

• Fit statistics to assist you in determining the goodness of fit

• Analysis capabilities such as extrapolation, differentiation, and integration

• A graphical environment that allows you to:

- Explore and analyze data sets and fits visually and numerically

- Save your work in various formats including M-files, binary files, and 
workspace variables

The Curve Fitting Toolbox consists of two different environments: 

• The Curve Fitting Tool, which is a graphical user interface (GUI) 
environment

• The MATLAB command line environment

You can explore the Curve Fitting Tool by typing

cftool

Click the GUI Help buttons to learn how to proceed. Additionally, you can 
follow the examples in the tutorial sections of this guide, which are all GUI 
oriented.



What Is the Curve Fitting Toolbox?
To explore the command line environment, you can list the toolbox functions by 
typing

help curvefit

To view the code for any function, type

type function_name

To view the help for any function, type

help function_name

You can change the way any toolbox function works by copying and renaming 
the M-file, and then modifying your copy. However, these changes will not be 
reflected in the graphical environment.

You can also extend the toolbox by adding your own M-files, or by using it in 
combination with other products such as the Statistics Toolbox or the 
Optimization Toolbox.

Differences Between the Curve Fitting Tool and 
Command-Line Environments
Although the Curve Fitting Tool and the command-line environments are 
functionally equivalent, you generally cannot mix the two when performing a 
given curve fitting task. For example, you cannot generate a fit at the command 
line and then import that fit into the Curve Fitting Tool. However, you can 
create a fit in the Curve Fitting Tool and then generate an associated M-file. 
You can then recreate the fit from the command line and modify the M-file 
according to your needs. For this reason, as well as for the enhanced data 
analysis and exploration tools that are available, we recommend that you use 
the Curve Fitting Tool for most tasks.
1-3
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Opening the Curve Fitting Tool
The Curve Fitting Tool is a graphical user interface (GUI) that allows you to

• Visually explore one or more data sets and fits as scatter plots.

• Graphically evaluate the goodness of fit using residuals and prediction 
bounds.

• Access additional interfaces for

- Importing, viewing, and smoothing data

- Fitting data, and comparing fits and data sets

- Marking data points to be excluded from a fit

- Selecting which fits and data sets are displayed in the tool

- Interpolating, extrapolating, differentiating, or integrating fits

You open the Curve Fitting Tool with the cftool command.

cftool



Importing the Data
Importing the Data
Before you can import data into the Curve Fitting Tool, the data variables must 
exist in the MATLAB workspace. For this example, the data is stored in the file 
census.mat, which is provided with MATLAB.

load census

The workspace now contains two new variables, cdate and pop:

• cdate is a column vector containing the years 1790 to 1990 in 10-year 
increments.

• pop is a column vector with the US population figures that correspond to the 
years in cdate.

You can import data into the Curve Fitting Tool with the Data GUI. You open 
this GUI by clicking the Data button on the Curve Fitting Tool. As shown 
below, the Data GUI consists of two panes: Data sets and Smooth. The Data 
Sets pane allows you to

• Import predictor (X) data, response (Y) data, and weights. If you do not 
import weights, then they are assumed to be 1 for all data points.

• Specify the name of the data set.

• Preview the data.
1-5
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To load cdate and pop into the Curve Fitting Tool, select the appropriate 
variable names from the X Data and Y Data lists. The data is then displayed 
in the Preview window. Click the Create data set button to complete the data 
import process.

The Smooth pane is described in Chapter 2, “Importing, Viewing, and 
Preprocessing Data.”

Select the data 
variable names.

Click Create data set 
to import the data.



Fitting the Data
Fitting the Data
You fit data with the Fitting GUI. You open this GUI by clicking the Fitting 
button on the Curve Fitting Tool. The Fitting GUI consists of two parts: the Fit 
Editor and the Table of Fits. The Fit Editor allows you to

• Specify the fit name, the current data set, and the exclusion rule.

• Explore various fits to the current data set using a library or custom 
equation, a smoothing spline, or an interpolant.

• Override the default fit options such as the coefficient starting values.

• Compare fit results including the fitted coefficients and goodness of fit 
statistics.

The Table of Fits allows you to

• Keep track of all the fits and their data sets for the current session.

• Display a summary of the fit results.

• Save or delete the fit results.

The Data Fitting Procedure
For this example, begin by fitting the census data with a second degree 
polynomial. Then continue fitting the data using polynomial equations up to 
sixth degree, and a single-term exponential equation.

The data fitting procedure follows these general steps:

1 From the Fit Editor, click New Fit.

Note that this action always defaults to a linear polynomial fit type. You use 
New Fit at the beginning of your curve fitting session, and when you are 
exploring different fit types for a given data set.

2 Because the initial fit uses a second degree polynomial, select quadratic 
polynomial from the Polynomial list. Name the fit poly2.

3 Click the Apply button or select the Immediate apply check box. The 
library model, fitted coefficients, and goodness of fit statistics are displayed 
in the Results area.
1-7
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4 Fit the additional library equations.

For fits of a given type (for example, polynomials), you should use Copy Fit 
instead of New Fit because copying a fit retains the current fit type state 
thereby requiring fewer steps than creating a new fit each time.

The Fitting GUI is shown below with the results of fitting the census data with 
a quadratic polynomial.

The Table of Fits allows you to keep 
track of all the fits, their data sets, 
and fit results for the current session. 

The Fit Editor allows you to select a data 
set and a fit name, and to explore and 
compare various library and custom fits. 



Fitting the Data
The data, fit, and residuals are shown below. You display the residuals as a line 
plot by selecting the menu item View->Residuals->Line plot from the Curve 
Fitting Tool.

The residuals indicate that a better fit may be possible. Therefore, you should 
continue fitting the census data following the procedure outlined in the 
beginning of this section.

The residuals from a good fit should look random with no apparent pattern. A 
pattern, such as a tendency for consecutive residuals to have the same sign, can 
be an indication that a better model exists.

These residuals indicate that 
a better fit may be possible.
1-9
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When you fit higher degree polynomials, the Results area displays this 
warning:

Equation is badly conditioned. Remove repeated data points
or try centering and scaling.

The warning arises because the fitting procedure uses the cdate values as the 
basis for a matrix with very large values. The spread of the cdate values 
results in scaling problems. To address this problem, you can normalize the 
cdate data. Normalization is a process of scaling the predictor data to improve 
the accuracy of the subsequent numeric computations. A way to normalize 
cdate is to center it at zero mean and scale it to unit standard deviation.

(cdate - mean(cdate))./std(cdate)

To normalize data with the Curve Fitting Tool, select the Center and scale X 
data check box.

Note  Because the predictor data changes after normalizing, the values of the 
fitted coefficients also change when compared to the original data. However, 
the functional form of the data and the resulting goodness of fit statistics do 
not change. Additionally, the data is displayed in the Curve Fitting Tool using 
the original scale.

Determining the Best Fit
To determine the best fit, you should examine both the graphical and 
numerical fit results.

Examining the Graphical Fit Results
Your initial approach in determining the best fit should be a graphical 
examination of the fits and residuals. The graphical fit results shown below 
indicate that

• The fits and residuals for the polynomial equations are all similar, making it 
difficult to choose the best one.
0



Fitting the Data
• The fit and residuals for the single-term exponential equation indicate it is a 
poor fit overall. Therefore, it is a poor choice for extrapolation.

Use the Plotting GUI to remove exp1 from the scatter plot display.

The residuals for the polynomial 
fits are all similar making it 
difficult to choose the best one.

To easily view all the data, 
fits, and residuals, turn 
the legend off.

The residuals for the 
exponential fit indicate 
it is a poor fit overall.

Remove this fit from 
the scatter plot. 
1-11
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Because the goal of fitting the census data is to extrapolate the best fit to 
predict future population values, you should explore the behavior of the fits up 
to the year 2050. You can change the axes limits of the Curve Fitting Tool by 
selecting the menu item Tools->Axes Limit Control.

The census data and fits are shown below for an upper abscissa limit of 2050. 
The behavior of the sixth degree polynomial fit beyond the data range makes it 
a poor choice for extrapolation.

As you can see, you should exercise caution when extrapolating with 
polynomial fits because they can diverge wildly outside the data range.

The sixth degree polynomial fit 
beyond the data range makes it 
a poor choice for extrapolation.

Change the upper abscissa 
limit to 2050.
2



Fitting the Data
Examining the Numerical Fit Results
Because you can no longer eliminate fits by examining them graphically, you 
should examine the numerical fit results. There are two types of numerical fit 
results displayed in the Fitting GUI: goodness of fit statistics and confidence 
intervals on the fitted coefficients. The goodness of fit statistics help you 
determine how well the curve fits the data. The confidence intervals on the 
coefficients determine their accuracy.

Some goodness of fit statistics are displayed in the Results area of the Fit 
Editor for a single fit. All goodness of fit statistics are displayed in the Table 
of Fits for all fits, which allows for easy comparison.

In this example, the sum of squares due to error (SSE) and the adjusted 
R-square statistics are used to help determine the best fit. As described in 
“Goodness of Fit Statistics” on page 3-29, the SSE statistic is the least squares 
error of the fit, with a value closer to zero indicating a better fit. The adjusted 
R-square statistic is generally the best indicator of the fit quality when you add 
additional coefficients to your model.

You can modify the information displayed in the Table of Fits with the Table 
Options GUI. You open this GUI by clicking the Table options button on the 
Fitting GUI. As shown below, select the adjusted R-square statistic and clear 
the R-square statistic.

Do not display the R-square 
statistic in the Table of Fits.

Display the adjusted R-square 
statistic in the Table of Fits.
1-13
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The numerical fit results are shown below. You can click the Table of Fits 
column headings to sort by statistics results.

The SSE for exp1 indicates it is a poor fit, which was already determined by 
examining the fit and residuals. The lowest SSE value is associated with poly6. 
However, the behavior of this fit beyond the data range makes it a poor choice 
for extrapolation. The next best SSE value is associated with the fifth degree 
polynomial fit, poly5, suggesting it may be the best fit. However, the SSE and 
adjusted R-square values for the remaining polynomial fits are all very close to 
each other. Which one should you choose?

Click this column heading to sort 
the fits by the SSE values.

The SSE and adjusted R-square 
values suggest that the fifth degree 
polynomial fit is the best one.

The confidence bounds for the p1-p3 
coefficients suggest that a fifth degree 
polynomial overfits the census data.
4



Fitting the Data
To resolve this issue, examine the confidence bounds for the remaining fits. By 
default, 95% confidence bounds are calculated. You can change this level by 
selecting the menu item View->Confidence Level from the Curve Fitting Tool.

The p1, p2, and p3 coefficients for the fifth degree polynomial suggest that it 
overfits the census data. However, the confidence bounds for the quadratic fit, 
poly2, indicate that the fitted coefficients are known fairly accurately. 
Therefore, after examining both the graphical and numerical fit results, it 
appears that you should use poly2 to extrapolate the census data.

Note  The fitted coefficients associated with the constant, linear, and 
quadratic terms are nearly identical for each polynomial equation. However, 
as the polynomial degree increases, the coefficient bounds associated with the 
higher degree terms increase, which suggests overfitting.

For more information about confidence bounds, refer to “Confidence and 
Prediction Bounds” on page 3-32.

Saving the Fit Results
By clicking the Save to workspace button, you can save the selected fit and 
the associated fit results to the MATLAB workspace. The fit is saved as a 
MATLAB object and the associated fit results are saved as structures. This 
example saves all the fit results for the best fit, poly2.

fittedmodel1 is saved as a Curve Fitting Toolbox cfit object.

whos fittedmodel1

  Name               Size                   Bytes  Class
  fittedmodel1       1x1                     6178  cfit object

Grand total is 386 elements using 6178 bytes
1-15
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The cfit object display includes the model, the fitted coefficients, and the 
confidence bounds for the fitted coefficients.

fittedmodel1

fittedmodel1 =
     Linear model Poly2:
       fittedmodel1(x) = p1*x^2 + p2*x + p3
     Coefficients (with 95% confidence bounds):
       p1 =    0.006541  (0.006124, 0.006958)
       p2 =      -23.51  (-25.09, -21.93)
       p3 =  2.113e+004  (1.964e+004, 2.262e+004)

The goodness1 structure contains goodness of fit results.

goodness1

goodness1 = 
           sse: 159.0293
       rsquare: 0.9987
           dfe: 18
    adjrsquare: 0.9986
          rmse: 2.9724

The output1 structure contains additional information associated with the fit.

output1

output1 = 
       numobs: 21
     numparam: 3
    residuals: [21x1 double]
     Jacobian: [21x3 double]
     exitflag: 1
    algorithm: 'QR factorization and solve'
6



Analyzing the Fit
Analyzing the Fit
You can evaluate (interpolate or extrapolate), differentiate, or integrate a fit 
over a specified data range with the Analysis GUI. You open this GUI by 
clicking the Analysis button on the Curve Fitting Tool.

For this example, you will extrapolate the quadratic polynomial fit to predict 
the US population from the year 2000 to the year 2050 in 10 year increments, 
and then plot both the analysis results and the data. To do this: 

• Enter the appropriate MATLAB vector in the Analyze at Xi field.

• Select the Evaluate fit at Xi check box.

• Select the Plot results and Plot data set check boxes.

• Click the Apply button.

The numerical extrapolation results are shown below.

Specify the fit and 
data to analyze.

Select this check box 
to extrapolate.

Plot both the analysis 
results and the data.
1-17
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The extrapolated values and the census data set are displayed together in a 
new figure window.

Saving the Analysis Results
By clicking the Save to workspace button, you can save the extrapolated 
values as a structure to the MATLAB workspace.

The resulting structure is shown below.

analysisresults1

analysisresults1 = 
xi: [6x1 double]

    yfit: [6x1 double]
8



Saving Your Work
Saving Your Work
The Curve Fitting Toolbox provides you with several options for saving your 
work. For example, as described in “Saving the Fit Results” on page 1-15, you 
can save one or more fits and the associated fit results as variables to the 
MATLAB workspace. You can then use this saved information for 
documentation purposes, or to extend your data exploration and analysis. In 
addition to saving your work to MATLAB workspace variables, you can

• Save the session.

• Generate an M-file.

Before performing any of these tasks, you may want to remove unwanted data 
sets and fits from the Curve Fitting Tool display. An easy way to do this is with 
the Plotting GUI. The Plotting GUI shown below is configured to display only 
the census data and the best fit, poly2.

Clear the remaining fits 
associated with the census 
data except the best fit.
1-19
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Saving the Session
The curve fitting session is defined as the current collection of fits for all data 
sets. You may want to save your session so that you can continue data 
exploration and analysis at a later time using the Curve Fitting Tool without 
losing any current work.

Save the current curve fitting session by selecting the menu item File->Save 
Session from the Curve Fitting Tool. The Save Session dialog is shown below.

The session is stored in binary form in a cfit file, and contains this 
information:

• All data sets and associated fits

• The state of the Fitting GUI, including Table of Fits entries and exclusion 
rules

• The state of the Plotting GUI

To avoid saving unwanted data sets, you should delete them from the Curve 
Fitting Tool. You delete data sets using the Data Sets pane of the Data GUI. If 
there are fits associated with the unwanted data sets, they are deleted as well.

You can load a saved session by selecting the menu item File->Load Session 
from the Curve Fitting Tool. When the session is loaded, the saved state of the 
Curve Fitting Tool display is reproduced, and may display the data, fits, 
residuals, and so on. If you open the Fitting GUI, then the loaded fits are 
displayed in the Table of Fits. Select a fit from this table to continue your curve 
fitting session.
0



Saving Your Work
Generating an M-File
You may want to generate an M-file so that you can continue data exploration 
and analysis from the MATLAB command line. You can run the M-file without 
modification to recreate the fits and results that you created with the Curve 
Fitting Tool, or you can edit and modify the file as needed. For detailed 
descriptions of the functions provided by the toolbox, refer to Chapter 4, 
“Function Reference.”

If you have many data sets to fit and you want to automate the fitting process, 
you should use the Curve Fitting Tool to select the appropriate model and fit 
options, generate an M-file, and then run the M-file in batch mode.

Save your work to an M-file by selecting the menu item File->Save M-file from 
the Curve Fitting Tool. The Save M-File dialog is shown below. 

The M-file can capture this information from the Curve Fitting Tool:

• All data set variable names, associated fits, and residuals

• Fit options such as whether the data should be normalized, the fit starting 
points, and the fitting method

You can recreate the saved fits in a new figure window by typing the name of 
the M-file at the MATLAB command line. Note that you must provide the 
appropriate data variables as inputs to the M-file. These variables are given in 
the M-file help.
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For example, the help for the censusfit M-file indicates that the variables 
cdate and pop are required to recreate the saved fit.

help censusfit

 CENSUSFIT    Create plot of datasets and fits
    CENSUSFIT(CDATE,POP)
    Creates a plot, similar to the plot in the main curve fitting
    window, using the data that you provide as input.  You can
    apply this function to the same data you used with cftool
    or with different data.  You may want to edit the function to
    customize the code and this help message.
 
    Number of datasets:  1
    Number of fits:  6
2
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Importing, Viewing, and 
Preprocessing Data

This chapter describes how to import, view, and preprocess data with the Curve Fitting Toolbox. You 
import data with the Data GUI, and view data graphically as a scatter plot using the Curve Fitting 
Tool. The main preprocessing steps are smoothing, and excluding and sectioning data. You smooth 
data with the Data GUI, and exclude and section data with the Exclude GUI. The sections are as 
follows.

Importing Data Sets 
(p. 2-2)

Select workspace variables that compose the data set, list all imported 
and generated data sets, and delete one or more data sets.

Viewing Data (p. 2-6) View the data graphically as a scatter plot.

Smoothing Data (p. 2-9) Reduce noise in a data set using moving average filtering, lowess or 
robust lowess, loess or robust loess, or Savitzky-Golay filtering.

Excluding and Sectioning 
Data (p. 2-25)

Mark individual data points (outliers) to be excluded from a fit, or mark 
a range of data points (sectioning) to be excluded from a fit.

Additional Preprocessing 
Steps (p. 2-40)

Additional preprocessing steps not available through the Data GUI, 
such as transforming the response data and removing Infs, NaNs, and 
outliers from a data set.

Selected Bibliography 
(p. 2-42)

Resources for additional information.
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Importing Data Sets
You import data sets into the Curve Fitting Tool with the Data Sets pane of the 
Data GUI. Using this pane, you can

• Select workspace variables that compose a data set

• Display a list of all imported data sets

• View, delete, or rename one or more data sets

The Data Sets pane is shown below followed by a description of its features.

Construct and 
name the data set.

Data sets list



Importing Data Sets
Construct and Name the Data Set

• Import workspace vectors — All selected variables must be the same 
length. You can import only vectors, not matrices or scalars. Infs and NaNs 
are ignored because you cannot fit data containing these values, and only the 
real part of a complex number is used. To perform any curve-fitting task, you 
must select at least one vector of data:

- X data — Select the predictor data.

- Y data — Select the response data.

- Weights — Select the weights associated with the response data. If 
weights are not imported, they are assumed to be 1 for all data points.

• Preview — The selected workspace vectors are displayed graphically in the 
preview window. Weights are not displayed.

• Data set name — The name of the imported data set. The toolbox 
automatically creates a unique name for each imported data set. You can 
change the name by editing this field. Click the Create data set button to 
complete the data import process.

Data Sets List

• Data sets — Lists all data sets added to the Curve Fitting Tool. The data sets 
can be created from workspace variables, or from smoothing an existing 
imported data set. When you select a data set, you can perform these actions:

- Click View to open the View Data Set GUI. Using this GUI, you can view 
a single data set both graphically and numerically. Additionally, you can 
display data points to be excluded in a fit by selecting an exclusion rule.

- Click Rename to change the name of a single data set.

- Click Delete to delete one or more data sets. To select multiple data sets, 
you can use the Ctrl key and the mouse to select data sets one by one, or 
you can use the Shift key and the mouse to select a range of data sets.
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Example: Importing Data
This example imports the ENSO data set into the Curve Fitting Toolbox using 
the Data Sets pane of the Data GUI. The first step is to load the data from the 
file enso.mat into the MATLAB workspace.

load enso

The workspace contains two new variables, pressure and month:

• pressure is the monthly averaged atmospheric pressure differences between 
Easter Island and Darwin, Australia. This difference drives the trade winds 
in the southern hemisphere.

• month is the relative time in months.

Alternatively, you can import data by specifying the variable names as 
arguments to the cftool function.

cftool(month,pressure)

In this case, the Data GUI is not opened.

Data Import Process
The data import process is described below:

1 Select workspace variables.

The predictor and response data are displayed graphically in the Preview 
window. Weights and data points containing Infs or NaNs are not displayed.

2 Specify the data set name.

You should specify a meaningful name when you import multiple data sets. 
If you do not specify a name, the default name, which is constructed from the 
selected variable names, is used.



Importing Data Sets
3 Click the Create data set button.

The Data sets list box displays all the data sets added to the toolbox. Note 
that you can construct data sets from workspace variables, or by smoothing 
an existing data set.

If your data contains Infs or complex values, a warning message such as the 
message shown below is displayed.

The Data Sets pane shown below displays the imported ENSO data in the 
Preview window. After you click the Create data set button, the data set enso 
is added to the Data sets list box. You can then view, rename, or delete enso by 
selecting it in the list box and clicking the appropriate button. 

 Select the workspace 
variable names.

Click Create data set to 
import the data.

Specify the data set name.
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Viewing Data
The Curve Fitting Toolbox provides two ways to view imported data:

• Graphically in a scatter plot

• Numerically in a table

Viewing Data Graphically
After you import a data set, it is automatically displayed as a scatter plot in the 
Curve Fitting Tool. The response data is plotted on the vertical axis and the 
predictor data is plotted on the horizontal axis.

The scatter plot is a powerful tool because it allows you to view the entire data 
set at once, and it can easily display a wide range of relationships between the 
two variables. You should examine the data carefully to determine whether 
preprocessing is required, or to deduce a reasonable fitting approach. For 
example, it’s typically very easy to identify outliers in a scatter plot, and to 
determine whether you should fit the data with a straight line, a periodic 
function, a sum of Gaussians, and so on.

Enhancing the Graphical Display
The Curve Fitting Toolbox provides several tools for enhancing the graphical 
display of a data set. These tools are available through the Tools menu, the 
GUI toolbar, and right-click menus.

You can zoom in, zoom out, display data and fit tips, and so on using the Tools 
menu and the GUI toolbar shown below. 

Tools menu

GUI toolbar



Viewing Data
You can change the color, line width, line style, and marker type of the 
displayed data points using the right-click menu shown below. You activate 
this menu by placing your mouse over a data point and right-clicking. Note that 
a similar menu is available for fitted curves. 

The ENSO data is shown below after the display has been enhanced using 
several of these tools. 

Right-click menu

Display data tips for the 
maximum response value.

Display the legend for 
the ENSO data set.

Change the color, marker 
type and line style for 
the data.

Change the axis limits.

Display the grid.
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Viewing Data Numerically
You can view the numerical values of a data set, as well as data points to be 
excluded from subsequent fits, with the View Data Set GUI. You open this GUI 
by selecting a name in the Data sets list box of the Data GUI and clicking the 
View button. The View Data Set GUI for the ENSO data set is shown below, 
followed by a description of its features.

• Data set — Lists the names of the viewed data set and the associated 
variables. The data is displayed graphically below this list.

The index, predictor data (X), response data (Y), and weights (if imported) 
are displayed numerically in the table. If the data contains Infs or NaNs, 
those values are labeled “ignored.” If the data contains complex numbers, 
only the real part is displayed.

• Exclusion rules — Lists all the exclusion rules that are compatible with the 
viewed data set. When you select an exclusion rule, the data points marked 
for exclusion are grayed in the table, and are identified with an “x” in the 
graphical display. To exclude the data points while fitting, you must select 
the exclusion rule in the Fitting GUI.

An exclusion rule is compatible with the viewed data set if their lengths are 
the same, or if it is created by sectioning only.



Smoothing Data
Smoothing Data
If your data is noisy, you might need to apply a smoothing algorithm to expose 
its features, and to provide a reasonable starting approach for parametric 
fitting. The two basic assumptions that underlie smoothing are

• The relationship between the response data and the predictor data is 
smooth.

• The smoothing process results in a smoothed value that is a better estimate 
of the original value because the noise has been reduced.

The smoothing process attempts to estimate the average of the distribution 
of each response value. The estimation is based on a specified number of 
neighboring response values.

You can think of smoothing as a local fit because a new response value is 
created for each original response value. Therefore, smoothing is similar to 
some of the nonparametric fit types supported by the toolbox, such as 
smoothing spline and cubic interpolation. However, this type of fitting is not 
the same as parametric fitting, which results in a global parameterization of 
the data.

Note  You should not fit data with a parametric model after smoothing, 
because the act of smoothing invalidates the assumption that the errors are 
normally distributed. Instead, you should consider smoothing to be a data 
exploration technique.

There are two common types of smoothing methods: filtering (averaging) and 
local regression. Each smoothing method requires a span. The span defines a 
window of neighboring points to include in the smoothing calculation for each 
data point. This window moves across the data set as the smoothed response 
value is calculated for each predictor value. A large span increases the 
smoothness but decreases the resolution of the smoothed data set, while a 
small span decreases the smoothness but increases the resolution of the 
smoothed data set. The optimal span value depends on your data set and the 
smoothing method, and usually requires some experimentation to find.
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The Curve Fitting Toolbox supports these smoothing methods: 

• Moving average filtering — Lowpass filter that takes the average of 
neighboring data points.

• Lowess and loess — Locally weighted scatter plot smooth. These methods 
use linear least squares fitting, and a first-degree polynomial (lowess) or a 
second-degree polynomial (loess). Robust lowess and loess methods that are 
resistant to outliers are also available.

• Savitzky-Golay filtering — A generalized moving average where you derive 
the filter coefficients by performing an unweighted linear least squares fit 
using a polynomial of the specified degree.

Note that you can also smooth data using a smoothing spline. Refer to 
“Nonparametric Fitting” on page 3-68 for more information.

You smooth data with the Smooth pane of the Data GUI. The pane is shown 
below followed by a description of its features.

Data sets

 Data sets list

Smoothing method 
and parameters
0



Smoothing Data
Data Sets

• Original data set — Select the data set you want to smooth.

• Smoothed data set — Specify the name of the smoothed data set. Note that 
the process of smoothing the original data set always produces a new data 
set containing smoothed response values.

Smoothing Method and Parameters

• Method — Select the smoothing method. Each response value is replaced 
with a smoothed value that is calculated by the specified smoothing method.

- Moving average — Filter the data by calculating an average.

- Lowess — Locally weighted scatter plot smooth using linear least squares 
fitting and a first-degree polynomial.

- Loess — Locally weighted scatter plot smooth using linear least squares 
fitting and a second-degree polynomial.

- Savitzky-Golay — Filter the data with an unweighted linear least 
squares fit using a polynomial of the specified degree.

- Robust Lowess — Lowess method that is resistant to outliers.

- Robust Loess — Loess method that is resistant to outliers.

• Span — The number of data points used to compute each smoothed value. 

For the moving average and Savitzky-Golay methods, the span must be odd. 
For all locally weighted smoothing methods, if the span is less than 1, it is 
interpreted as the percentage of the total number of data points.

• Degree — The degree of the polynomial used in the Savitzky-Golay method. 
The degree must be smaller than the span.

Data Sets List

• Smoothed data sets — Lists all the smoothed data sets. You add a smoothed 
data set to the list by clicking the Create smoothed data set button. When 
you select a data set from the list, you can perform these actions:

- Click View to open the View Data Set GUI. Using this GUI, you can view 
a single data set both graphically and numerically. Additionally, you can 
display data points to be excluded in a fit by selecting an exclusion rule.

- Click Rename to change the name of a single data set.
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- Click Delete to delete one or more data sets. To select multiple data sets, 
you can use the Ctrl key and the mouse to select data sets one by one, or 
you can use the Shift key and the mouse to select a range of data sets.

- Click Save to workspace to save a single data set to a structure.

Moving Average Filtering
A moving average filter smooths data by replacing each data point with the 
average of the neighboring data points defined within the span. This process is 
equivalent to lowpass filtering with the response of the smoothing given by the 
difference equation

where ys(i) is the smoothed value for the ith data point, N is the number of 
neighboring data points on either side of ys(i), and 2N+1 is the span.

The moving average smoothing method used by the Curve Fitting Toolbox 
follows these rules:

• The span must be odd. 

• The data point to be smoothed must be at the center of the span. 

• The span is adjusted for data points that cannot accommodate the specified 
number of neighbors on either side.

• The end points are not smoothed because a span cannot be defined.

Note that you can use filter function to implement difference equations such 
as the one shown above. However, because of the way that the end points are 
treated, the toolbox moving average result will differ from the result returned 
by filter. Refer to “Difference Equations and Filtering” in the MATLAB 
documentation for more information.

For example, suppose you smooth data using a moving average filter with a 
span of 5. Using the rules described above, the first four elements of ys are 
given by

ys(1) = y(1)
ys(2) = (y(1)+y(2)+y(3))/3
ys(3) = (y(1)+y(2)+y(3)+y(4)+y(5))/5
ys(4) = (y(2)+y(3)+y(4)+y(5)+y(6))/5

ys i( ) 1
2N 1+
------------------ y i N+( ) y i N 1–+( ) … y i N–( )+ + +( )=
2



Smoothing Data
Note that ys(1), ys(2), ... ,ys(end) refer to the order of the data after sorting, 
and not necessarily the original order.

The smoothed values and spans for the first four data points of a generated 
data set are shown below. 

Plot (a) indicates that the first data point is not smoothed because a span 
cannot be constructed. Plot (b) indicates that the second data point is 
smoothed using a span of three. Plots (c) and (d) indicate that a span of five 
is used to calculate the smoothed value.
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Lowess and Loess: Local Regression Smoothing
The names “lowess” and “loess” are derived from the term “locally weighted 
scatter plot smooth,” as both methods use locally weighted linear regression to 
smooth data.

The smoothing process is considered local because, like the moving average 
method, each smoothed value is determined by neighboring data points defined 
within the span. The process is weighted because a regression weight function 
is defined for the data points contained within the span. In addition to the 
regression weight function, you can use a robust weight function, which makes 
the process resistant to outliers. Finally, the methods are differentiated by the 
model used in the regression: lowess uses a linear polynomial, while loess uses 
a quadratic polynomial.

The local regression smoothing methods used by the Curve Fitting Toolbox 
follow these rules:

• The span can be even or odd.

• You can specify the span as a percentage of the total number of data points 
in the data set. For example, a span of 0.1 uses 10% of the data points.

The regression smoothing and robust smoothing procedures are described in 
detail below.

Local Regression Smoothing Procedure
The local regression smoothing process follows these steps for each data point:

1 Compute the regression weights for each data point in the span. The weights 
are given by the tricube function shown below.

x is the predictor value associated with the response value to be smoothed, 
xi are the nearest neighbors of x as defined by the span, and d(x) is the 
distance along the abscissa from x to the most distant predictor value within 
the span. The weights have these characteristics: 

- The data point to be smoothed has the largest weight and the most 
influence on the fit.

- Data points outside the span have zero weight and no influence on the fit.

wi 1
x xi–
d x( )
-------------

3
– 

  3
=

4



Smoothing Data
2 A weighted linear least squares regression is performed. For lowess, the 
regression uses a first degree polynomial. For loess, the regression uses a 
second degree polynomial.

3 The smoothed value is given by the weighted regression at the predictor 
value of interest.

If the smooth calculation involves the same number of neighboring data points 
on either side of the smoothed data point, the weight function is symmetric. 
However, if the number of neighboring points is not symmetric about the 
smoothed data point, then the weight function is not symmetric. Note that 
unlike the moving average smoothing process, the span never changes. For 
example, when you smooth the data point with the smallest predictor value, 
the shape of the weight function is truncated by one half, the leftmost data 
point in the span has the largest weight, and all the neighboring points are to 
the right of the smoothed value. 

The weight function for an end point and for an interior point is shown below 
for a span of 31 data points.
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Using the lowess method with a span of five, the smoothed values and 
associated regressions for the first four data points of a generated data set are 
shown below. 

Notice that the span does not change as the smoothing process progresses from 
data point to data point. However, depending on the number of nearest 
neighbors, the regression weight function might not be symmetric about the 
data point to be smoothed. In particular, plots (a) and (b) use an asymmetric 
weight function, while plots (c) and (d) use a symmetric weight function.

For the loess method, the graphs would look the same except the smoothed 
value would be generated by a second-degree polynomial.
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Robust Smoothing Procedure
If your data contains outliers, the smoothed values can become distorted, and 
not reflect the behavior of the bulk of the neighboring data points. To overcome 
this problem, you can smooth the data using a robust procedure that is not 
influenced by a small fraction of outliers. For a description of outliers, refer to 
“Marking Outliers” on page 2-27.

The Curve Fitting Toolbox provides a robust version for both the lowess and 
loess smoothing methods. These robust methods include an additional 
calculation of robust weights, which is resistant to outliers. The robust 
smoothing procedure follows these steps:

1 Calculate the residuals from the smoothing procedure described in the 
previous section.

2 Compute the robust weights for each data point in the span. The weights are 
given by the bisquare function shown below.

ri is the residual of the ith data point produced by the regression smoothing 
procedure, and MAD is the median absolute deviation of the residuals:

The median absolute deviation is a measure of how spread out the residuals 
are. If ri is small compared to 6MAD, then the robust weight is close to 1. If 
ri is greater than 6MAD, the robust weight is 0 and the associated data point 
is excluded from the smooth calculation.

3 Smooth the data again using the robust weights. The final smoothed value 
is calculated using both the local regression weight and the robust weight.

4 Repeat the previous two steps for a total of five iterations.

wi
1( ri 6MAD⁄( )2 )

2
–

0



= ri 6MAD<

ri 6MAD≥

MAD median r( )=
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The smoothing results of the lowess procedure are compared below to the 
results of the robust lowess procedure for a generated data set that contains a 
single outlier. The span for both procedures is 11 data points.

Plot (a) shows that the outlier influences the smoothed value for several 
nearest neighbors. Plot (b) suggests that the residual of the outlier is greater 
than six median absolute deviations. Therefore, the robust weight is zero for 
this data point. Plot (c) shows that the smoothed values neighboring the 
outlier reflect the bulk of the data.
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Savitzky-Golay Filtering
Savitzky-Golay filtering can be thought of as a generalized moving average. 
You derive the filter coefficients by performing an unweighted linear least 
squares fit using a polynomial of a given degree. For this reason, a 
Savitzky-Golay filter is also called a digital smoothing polynomial filter or a 
least squares smoothing filter. Note that a higher degree polynomial makes it 
possible to achieve a high level of smoothing without attenuation of data 
features.

The Savitzky-Golay filtering method is often used with frequency data or with 
spectroscopic (peak) data. For frequency data, the method is effective at 
preserving the high-frequency components of the signal. For spectroscopic 
data, the method is effective at preserving higher moments of the peak such as 
the line width. By comparison, the moving average filter tends to filter out a 
significant portion of the signal's high-frequency content, and it can only 
preserve the lower moments of a peak such as the centroid. However, 
Savitzky-Golay filtering can be less successful than a moving average filter at 
rejecting noise.

The Savitzky-Golay smoothing method used by the Curve Fitting Toolbox 
follows these rules:

• The span must be odd.

• The polynomial degree must be less than the span.

• The data points are not required to have uniform spacing.

Normally, Savitzky-Golay filtering requires uniform spacing of the predictor 
data. However, the algorithm provided by the Curve Fitting Toolbox 
supports nonuniform spacing. Therefore, you are not required to perform an 
additional filtering step to create data with uniform spacing.

The plot shown below displays generated Gaussian data and several attempts 
at smoothing using the Savitzky-Golay method. The data is very noisy and the 
peak widths vary from broad to narrow. The span is equal to 5% of the number 
of data points.
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Plot (a) shows the noisy data. To more easily compare the smoothed results, 
plots (b) and (c) show the data without the added noise.

Plot (b) shows the result of smoothing with a quadratic polynomial. Notice 
that the method performs poorly for the narrow peaks. Plot (c) shows the 
result of smoothing with a quartic polynomial. In general, higher degree 
polynomials can more accurately capture the heights and widths of narrow 
peaks, but can do poorly at smoothing wider peaks.

1 2 3 4 5 6 7 8

0

20

40

60

80
Savitzky−Golay Smoothing

(a)

noisy data

1 2 3 4 5 6 7 8

0

20

40

60

80

(b)

data
S−G quadratic

1 2 3 4 5 6 7 8

0

20

40

60

80

(c)

data
S−G quartic
0



Smoothing Data
Example: Smoothing Data
This example smooths the ENSO data set using the moving average, lowess, 
loess, and Savitzky-Golay methods with the default span. As shown below, the 
data appears noisy. Smoothing might help you visualize patterns in the data, 
and provide insight toward a reasonable approach for parametric fitting.

Because the data appears 
noisy, smoothing might 
help uncover its structure.
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The Smooth pane shown below displays all the new data sets generated by 
smoothing the original ENSO data set. Whenever you smooth a data set, a new 
data set of smoothed values is created. The smoothed data sets are 
automatically displayed in the Curve Fitting Tool. You can also display a single 
data set graphically and numerically by clicking the View button.

A new data set composed of 
smoothed values is created 
from the original data set.

All smoothed data 
sets are listed here.

The View Data Set GUI 
displays the selected data set 
graphically and numerically.

Click the View button to 
display the selected data set.
2



Smoothing Data
Use the Plotting GUI to display only the data sets of interest. As shown below, 
the periodic structure of the ENSO data set becomes apparent when it is 
smoothed using a moving average filter with the default span. Not 
surprisingly, the uncovered structure is periodic, which suggests that a 
reasonable parametric model should include trigonometric functions. 

Refer to “General Equation: Fourier Series Fit” on page 3-52 for an example 
that fits the ENSO data using a sum of sine and cosine functions.

Display only the data set 
created with the moving 
average method.

The smoothing process 
uncovers obvious periodic 
structure in the data.
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Saving the Results
By clicking the Save to workspace button, you can save a smoothed data set 
as a structure to the MATLAB workspace. This example saves the moving 
average results contained in the enso (ma) data set.

The saved structure contains the original predictor data x and the smoothed 
data y.

smootheddata1

smootheddata1 = 
    x: [168x1 double]
    y: [168x1 double]
4



Excluding and Sectioning Data
Excluding and Sectioning Data
If there is justification, you might want to exclude part of a data set from a fit. 
Typically, you exclude data so that subsequent fits are not adversely affected. 
For example, if you are fitting a parametric model to measured data that has 
been corrupted by a faulty sensor, the resulting fit coefficients will be 
inaccurate.

The Curve Fitting Toolbox provides two methods to exclude data:

• Marking Outliers — Outliers are defined as individual data points that you 
exclude because they are inconsistent with the statistical nature of the bulk 
of the data.

• Sectioning — Sectioning excludes a window of response or predictor data. 
For example, if many data points in a data set are corrupted by large 
systematic errors, you might want to section them out of the fit.

For each of these methods, you must create an exclusion rule, which captures 
the range, domain, or index of the data points to be excluded.

To exclude data while fitting, you use the Fitting GUI to associate the 
appropriate exclusion rule with the data set to be fit. Refer to “Example: Robust 
Fit” on page 3-61 for more information about fitting a data set using an 
exclusion rule.
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You mark data to be excluded from a fit with the Exclude GUI, which you open 
from the Curve Fitting Tool. The GUI is shown below followed by a description 
of its features.

Exclusion Rule

• Exclusion rule name — Specify the name of the exclusion rule that 
identifies the data points to be excluded from subsequent fits.

• Existing exclusion rules — Lists the names of all exclusion rules created 
during the current session. When you select an existing exclusion rule, you 
can perform these actions:

- Click Copy to copy the exclusion rule. The exclusions associated with the 
original exclusion rule are recreated in the GUI. You can modify these 
exclusions and then click Create exclusion rule to save them to the copied 
rule.

- Click Rename to change the name of the exclusion rule.

- Click Delete to delete the exclusion rule. To select multiple exclusion 
rules, you can use the Ctrl key and the mouse to select exclusion rules one 
by one, or you can use the Shift key and the mouse to select a range of 
exclusion rules.

- Click View to display the exclusion rule graphically. If a data set is 
associated with the exclusion rule, the data is also displayed.

Exclude individual 
data points.

Exclude data sections 
by domain or range. 

Exclusion rule.
6
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Exclude Individual Data Points

• Select data set — Select the data set from which data points will be marked 
as excluded. You must select a data set to exclude individual data points.

• Exclude graphically — Open a GUI that allows you to exclude individual 
data points graphically.

Individually excluded data points are marked by an “x” in the GUI, and are 
automatically identified in the Check to exclude point table.

• Check to exclude point — Select individual data points to exclude. You can 
sort this table by clicking on any of the column headings.

Exclude Data Sections by Domain or Range

• Section — Specify a vertical window, a horizontal window, or a box of data 
points to include. The excluded data lie outside these windows. You do not 
need to select a data set to create an exclusion rule by sectioning.

- Exclude X — Section the predictor data by specifying the domain outside 
of which data is excluded.

- Exclude Y — Section the response data by specifying the range outside of 
which data is excluded.

Marking Outliers
Outliers are defined as individual data points that you exclude from a fit 
because they are inconsistent with the statistical nature of the bulk of the data, 
and will adversely affect the fit results. Outliers are often readily identified by 
a scatter plot of response data versus predictor data.

Marking outliers with the Curve Fitting Toolbox follows these rules:

• You must specify a data set before creating an exclusion rule.

In general, you should use the exclusion rule only with the specific data set 
it was based on. However, the toolbox does not prevent you from using the 
exclusion rule with another data set provided the size is the same.

• Using the Exclude GUI, you can exclude outliers either graphically or 
numerically.

As described in “Parametric Fitting” on page 3-4, one of the basic assumptions 
underlying curve fitting is that the data is statistical in nature and is described 
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by a particular distribution, which is often assumed to be Gaussian. The 
statistical nature of the data implies that it contains random variations along 
with a deterministic component.

data = deterministic component + random component

However, your data set might contain one or more data points that are 
nonstatistical in nature, or are described by a different statistical distribution. 
These data points might be easy to identify, or they might be buried in the data 
and difficult to identify.

A nonstatistical process can involve the measurement of a physical variable 
such as temperature or voltage in which the random variation is negligible 
compared to the systematic errors. For example, if your sensor calibration is 
inaccurate, the data measured with that sensor will be systematically 
inaccurate. In some cases, you might be able to quantify this nonstatistical 
data component and correct the data accordingly. However, if the scatter plot 
reveals that a handful of response values are far removed from neighboring 
response values, these data points are considered outliers and should be 
excluded from the fit. Outliers are usually difficult to explain away. For 
example, it might be that your sensor experienced a power surge or someone 
wrote down the wrong number in a log book.

If you decide there is justification, you should mark outliers to be excluded from 
subsequent fits — particularly parametric fits. Removing these data points can 
have a dramatic effect on the fit results because the fitting process minimizes 
the square of the residuals. If you do not exclude outliers, the resulting fit will 
be poor for a large portion of your data. Conversely, if you do exclude the 
outliers and choose the appropriate model, the fit results should be reasonable.

Because outliers can have a significant effect on a fit, they are considered 
influential data. However, not all influential data points are outliers. For 
example, your data set can contain valid data points that are far removed from 
the rest of the data. The data is valid because it is well described by the model 
used in the fit. The data is influential because its exclusion will dramatically 
affect the fit results.
8



Excluding and Sectioning Data
Two types of influential data points are shown below for generated data. Also 
shown are cubic polynomial fits and a robust fit that is resistant to outliers.

Plot (a) shows that the two influential data points are outliers and adversely 
affect the fit. Plot (b) shows that the two influential data points are consistent 
with the model and do not adversely affect the fit. Plot (c) shows that a robust 
fitting procedure is an acceptable alternative to marking outliers for exclusion. 
Robust fitting is described in “Robust Least Squares” on page 3-11.
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These outliers adversely 
affect the fit.

These data points are 
consistent with the model. 
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Sectioning
Sectioning involves specifying a range of response data or a range of predictor 
data to exclude. You might want to section a data set because different parts of 
the data set are described by different models or many contiguous data points 
are corrupted by noise, large systematic errors, and so on.

Sectioning data with the Curve Fitting Toolbox follows these rules:

• If you are only sectioning data and not excluding individual data points, then 
you can create an exclusion rule without specifying a data set name.

Note that you can associate the exclusion rule with any data set provided 
that the range or domain of the exclusion rule overlaps with the range or 
domain of the data set. This is useful if you have multiple data sets from 
which you want to exclude data points using the same range or domain.

• Using the Exclude GUI, you specify a range or domain of data to include. The 
excluded data lies outside this specification.

Additionally, you can specify only a single range, domain, or box (range and 
domain) of included data points. Therefore, at most, you can define two 
vertical strips, two horizontal strips, or a border of excluded data. Refer to 
“Example: Excluding and Sectioning Data” on page 2-32 for an example.

To exclude multiple sections of data, you can use the excludedata function 
from the MATLAB command line.
0



Excluding and Sectioning Data
Two examples of sectioning by domain are shown below for generated data.

Plot (a) shows the data set sectioned by fit type. The left section is fit with a 
linear polynomial, while the right section is fit with a cubic polynomial. Plot 
(b) shows the data set sectioned by fit type and by valid data. Here, the 
rightmost section is not part of any fit because the data is corrupted by noise. 
Note that reproducing these plots using the toolbox is a multistep process. For 
example, to reproduce plot (a), the steps are

1 Create an exclusion rule by sectioning the predictor data such that the data 
points described by the linear polynomial are excluded.

2 Create a different exclusion rule by sectioning the predictor data such that 
the data points described by the cubic polynomial are excluded.

3 Fit the data twice (once for each exclusion rule) using the appropriate model.
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Example: Excluding and Sectioning Data
This example modifies the ENSO data set to illustrate excluding and 
sectioning data. First, copy the ENSO response data to a new variable and add 
two outliers that are far removed from the bulk of the data.

rand('state',0)
yy = pressure;
yy(ceil(length(month)*rand(1))) = mean(pressure)*2.5;
yy(ceil(length(month)*rand(1))) = mean(pressure)*3.0;

Import the variables month and yy as the new data set enso1, and open the 
Exclude GUI. 

Assume that the first and last eight months of the data set are unreliable, and 
should be excluded from subsequent fits. The simplest way to exclude these 
data points is to section the predictor data. To do this, specify the range of data 
you want to include in the Exclude X outside of field of the Section pane.

There are two ways to exclude individual data points: using the Check to 
exclude point table or graphically. For this example, the simplest way to 
exclude the outliers is graphically. To do this, select the data set name and click 
the Exclude graphically button, which opens the Select Points for Exclusion 
Rule GUI.

Data points outside the 
specified domain are 
marked for exclusion.

Select the data set.

Open the GUI to exclude 
data points graphically.
2



Excluding and Sectioning Data
To mark data points for exclusion in the GUI, place the mouse cursor over the 
data point and left-click. The excluded data point is marked with a red X. To 
include an excluded data point, right-click the data point or select the Include 
Them radio button and left-click. Included data points are marked with a blue 
circle. To select multiple data points, click the left mouse button and drag the 
selection rubber band so that the rubber band box encompasses the desired 
data points. Note that the GUI identifies sectioned data with gray strips. You 
cannot graphically include sectioned data.

As shown below, the first and last eight months of data are excluded from the 
data set by sectioning, and the two outliers are excluded graphically. Note that 
the graphically excluded data points are identified in the Check to exclude 
point table. If you decide to include an excluded data point using the table, the 
graph is automatically updated.

If there are fits associated with the data, you can exclude data points based on 
the residuals of the fit by selecting the residual data in the Y list.

The vertical gray strips 
indicate data points 
sectioned by domain.

The x’s indicate data 
points excluded manually.
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The Exclude GUI for this example is shown below.

To save the exclusion rule, click the Create exclusion rule button. To exclude 
the data from a fit, you must select the exclusion rule from the Fitting GUI. 
Because the exclusion rule created in this example uses individually excluded 
data points, you can use it only with data sets that are the same size as the 
ENSO data set.

Data points outside the 
specified domain are 
marked for exclusion.

Individual data points 
marked for exclusion. 
4



Excluding and Sectioning Data
Viewing the Exclusion Rule
To view the exclusion rule, select an existing exclusion rule name and click the 
View button. The View Exclusion Rule GUI shown below displays the modified 
ENSO data set and the excluded data points, which are grayed in the table.

Example: Sectioning Periodic Data
For all parametric equations, the toolbox provides coefficient starting values. 
For certain types of data sets such as periodic data containing many periods, 
the starting values may not lead to satisfactory results. In this case, sectioning 
the data can provide you with improved starting values for the fit.

This example uses generated sine data with noise added. The time vector is 
given by t and the amplitude, frequency, and phase constant of the data are 
given by the vector cf.

rand('state',0);
t = [0:0.005:1.0]';
cf = [10 16*pi pi/4];
noisysine = cf(1)*(sin(cf(2)*t+cf(3))) + (rand(size(t))-0.5);

Import the variables t and noisysine, and fit the data with a single-term sine 
equation. The Fitting GUI, Fit Options GUI, and Curve Fitting Tool are shown 
below. To display the fit starting values, click the Fit options button. Note that 

The excluded data points 
are grayed in the table. 
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the amplitude starting point is reasonably close to the expected value, but the 
frequency and phase constant are not, which produces a poor fit.

The amplitude starting point is reasonably 
close to the expected value, but the 
frequency and phase constant are not.
6



Excluding and Sectioning Data
To produce a reasonable fit, follow these steps:

1 Create an exclusion rule that includes one or two periods, and excludes the 
remaining data.

As shown below, an exclusion rule is created graphically by using the 
selection rubber band to exclude all data points outside the first period. The 
exclusion rule is named 1Period.

Use the selection rubber band 
to exclude data points outside 
the first period. 

Exclude data 
graphically.
2-37



2 Importing, Viewing, and Preprocessing Data

2-3
2 Create a new fit using the single-term sine equation with the exclusion rule 
1Period applied.

The fit looks reasonable throughout the entire data set. However, because 
the global fit was based on a small fraction of data, goodness of fit statistics 
will not provide much insight into the fit quality.

Apply exclusion rule to the 
single-term exponential fit.

The global fit looks reasonable although 
an accurate evaluation of the goodness 
of fit is not possible.
8



Excluding and Sectioning Data
3 Fit the entire data set using the fitted coefficient values from the previous 
step as starting values.

The Fitting GUI, Fit Options GUI, and Curve Fitting Tool are shown below. 
Both the numerical and graphical fit results indicate a reasonable fit.

The coefficient starting values are 
given by the previous fit results.
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Additional Preprocessing Steps
Additional preprocessing steps not available through the Curve Fitting 
Toolbox GUIs include

• Transforming the response data

• Removing Infs, NaNs, and outliers

Transforming the Response Data
In some circumstances, you might want to transform the response data. 
Common transformations include the logarithm ln(y), and power functions 
such as y1/2, y-1, and so on. Using these transformations, you can linearize a 
nonlinear model, contract response data that spans one or more orders of 
magnitude, or simplify a model so that it involves fewer coefficients.

Note  You must transform variables at the MATLAB command line, and then 
import those variables into the Curve Fitting Toolbox. You cannot transform 
variables using any of the graphical user interfaces.

For example, suppose you want to use the following model to fit your data.

If you decide to use the power transform y-1, then the transformed model is 
given by 

As another example, the equation

becomes linear if you take the log transform of both sides.

You can now use linear least squares fitting procedures.

y 1

ax2 bx c+ +
-------------------------------=

y 1– ax2 bx c+ +=

y aebx=

y( )ln a( ) bx+ln=
0



Additional Preprocessing Steps
There are several disadvantages associated with performing transformations:

• For the log transformation, negative response values cannot be processed.

• For all transformations, the basic assumption that the residual variance is 
constant is violated. To avoid this problem, you could plot the residuals on 
the transformed scale. For the power transformation shown above, the 
transformed scale is given by the residuals 

Note that the residual plot associated with the Curve Fitting Tool does not 
support transformed scales.

Deciding on a particular transformation is not always obvious. However, a 
scatter plot will often reveal the best form to use. In practice you can 
experiment with various transforms and then plot the residuals from the 
command line using the transformed scale. If the errors are reasonable (they 
appear random with minimal scatter, and don’t exhibit any systematic 
behavior), the transform is a good candidate.

Removing Infs, NaNs, and Outliers
Although the Curve Fitting Toolbox ignores Infs and NaNs when fitting data, 
and you can exclude outliers during the fitting process, you might still want to 
remove this data from your data set. To do so, you modify the associated data 
set variables from the MATLAB command line.

For example, when using toolbox functions such as fit from the command line, 
you must supply predictor and response vectors that contain finite numbers. To 
remove Infs, you can use the isinf function.

ind = find(isinf(xx));
xx(ind) = [];
yy(ind) = [];

To remove NaNs, you can use the isnan function. For examples that remove 
NaNs and outliers from a data set, refer to “Data Preprocessing” in the MATLAB 
documentation.

ri yi
1– ŷi

1––=
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Fitting Data

Curve fitting refers to fitting curved lines to data. The curved line comes from regression techniques, 
a spline calculation, or interpolation. The data can be measured from a sensor, generated from a 
simulation, historical, and so on. The goal of curve fitting is to gain insight into your data. The insight 
will enable you to improve data acquisition techniques for future experiments, accept or refute a 
theoretical model, extract physical meaning from fitted coefficients, and draw conclusions about the 
data’s parent population.

This chapter describes how to fit data and evaluate the goodness of fit with the Curve Fitting Toolbox. 
The sections are as follows.

The Fitting Process (p. 3-2) The general steps you use when fitting any data set.

Parametric Fitting (p. 3-4) Fit your data using parametric models such as polynomials and 
exponentials, specify fit options such as the fitting algorithm and 
coefficient starting points, and evaluate the goodness of fit using 
graphical and numerical techniques.

Parametric fitting produces coefficients that describe the data globally, 
and often have physical meaning.

Nonparametric Fitting 
(p. 3-68)

Fit your data using nonparametric fit types such as splines and 
interpolants. 

Nonparametric fitting is useful when you want to fit a smooth curve 
through your data, and you are not interested in interpreting fitted 
coefficients.

Selected Bibliography 
(p. 3-75)

Resources for additional information.
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The Fitting Process
You fit data using the Fitting GUI. To open the Fitting GUI, click the Fitting 
button from the Curve Fitting Tool.

The Fitting GUI is shown below for the census data described in “Getting 
Started with the Curve Fitting Toolbox” on page 1-1, followed by the general 
steps you use when fitting any data set.

1. Select a data set and specify 
a fit name.

2. Select an exclusion rule.

3. Select a fit type, select fit 
options, fit the data, and 
evaluate the goodness of fit.

5. Save the selected fit results to 
the workspace.

4. Compare the current fit and data 
set to other fits and data sets.



The Fitting Process
1 Select a data set and fit name.

- Select the name of the current fit. When you click New fit or Copy fit, a 
default fit name is automatically created in the Fit name field. You can 
specify a new fit name by editing this field.

- Select the name of the current data set from the Data set list. All imported 
and smoothed data sets are listed.

2 Select an exclusion rule.

If you want to exclude data from a fit, select an exclusion rule from the 
Exclusion rule list. The list contains only exclusion rules that are 
compatible with the current data set. An exclusion rule is compatible with 
the current data set if their lengths are identical, or if it is created by 
sectioning only.

3 Select a fit type and fit options, fit the data, and evaluate the goodness of fit.

- The fit type can be a library or custom parametric model, a smoothing 
spline, or an interpolant.

- Select fit options such as the fitting algorithm, and coefficient starting 
points and constraints. Depending on your data and model, accepting the 
default fit options often produces an excellent fit.

- Fit the data by clicking the Apply button or by selecting the Immediate 
apply check box.

- Examine the fitted curve, residuals, goodness of fit statistics, confidence 
bounds, and prediction bounds for the current fit.

4 Compare fits.

- Compare the current fit and data set to previous fits and data sets by 
examining the goodness of fit statistics.

- Use the Table Options GUI to modify which goodness of fit statistics are 
displayed in the Table of Fits. You can sort the table by clicking on any 
column heading.

5 Save the fit results.

If the fit is good, save the results as a structure to the MATLAB workspace. 
Otherwise, modify the fit options or select another model.
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Parametric Fitting
Parametric fitting involves finding coefficients (parameters) for one or more 
models that you fit to data. The data is assumed to be statistical in nature and 
is divided into two components: a deterministic component and a random 
component.

data = deterministic component + random component

The deterministic component is given by the fit and the random component is 
often described as error associated with the data.

data = fit + error

The fit is given by a model that is a function of the independent (predictor) 
variable and one or more coefficients. The error represents random variations 
in the data that follow a specific probability distribution (usually Gaussian). 
The variations can come from many different sources, but are always present 
at some level when you are dealing with measured data. Systematic variations 
can also exist, but they can be difficult to quantify.

The fitted coefficients often have physical significance. For example, suppose 
you have collected data that corresponds to a single decay mode of a radioactive 
nuclide, and you want to find the half-life (T1/2) of the decay. The law of 
radioactive decay states that the activity of a radioactive substance decays 
exponentially in time. Therefore, the model to use in the fit is given by

where y0 is the number of nuclei at time t = 0, and λ is the decay constant. 
Therefore, the data can be described by

Both y0 and λ are coefficients determined by the fit. Because T1/2 = ln(2)/λ, the 
fitted value of the decay constant yields the half-life. However, because the 
data contains some error, the deterministic component of the equation cannot 
completely describe the variability in the data. Therefore, the coefficients and 
half-life calculation will have some uncertainty associated with them. If the 
uncertainty is acceptable, then you are done fitting the data. If the uncertainty 
is not acceptable, then you might have to take steps to reduce the error and 
repeat the data collection process.

y y0e λt–=

data y0e λt– error+=



Parametric Fitting
Basic Assumptions About the Error
When fitting data that contains random variations, there are two important 
assumptions that are usually made about the error:

• The error exists only in the response data, and not in the predictor data.

• The errors are random and follow a normal (Gaussian) distribution with zero 
mean and constant variance, σ2.

The second assumption is often expressed as

The components of this expression are described below.

Normal Distribution
The errors are assumed to be normally distributed because the normal 
distribution often provides an adequate approximation to the distribution of 
many measured quantities. Although the least squares fitting method does not 
assume normally distributed errors when calculating parameter estimates, the 
method works best for data that does not contain a large number of random 
errors with extreme values. The normal distribution is one of the probability 
distributions in which extreme random errors are uncommon. However, 
statistical results such as confidence and prediction bounds do require 
normally distributed errors for their validity.

Zero Mean
If the mean of the errors is zero, then the errors are purely random. If the mean 
is not zero, then it might be that the model is not the right choice for your data, 
or the errors are not purely random and contain systematic errors.

Constant Variance
A constant variance in the data implies that the “spread” of errors is constant. 
Data that has the same variance is sometimes said to be of equal quality.

The assumption that the random errors have constant variance is not implicit 
to weighted least squares regression. Instead, it is assumed that the weights 
provided in the fitting procedure correctly indicate the differing levels of 
quality present in the data. The weights are then used to adjust the amount of 
influence each data point has on the estimates of the fitted coefficients to an 
appropriate level.

error N 0 σ2,( )∼
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The Least Squares Fitting Method
The Curve Fitting Toolbox uses the method of least squares when fitting data. 
The fitting process requires a model that relates the response data to the 
predictor data with one or more coefficients. The result of the fitting process is 
an estimate of the “true” but unknown coefficients of the model.

To obtain the coefficient estimates, the least squares method minimizes the 
summed square of residuals. The residual for the ith data point ri is defined as 
the difference between the observed response value yi and the fitted response 
value , and is identified as the error associated with the data.

The summed square of residuals is given by

where n is the number of data points included in the fit and S is the sum of 
squares error estimate. The supported types of least squares fitting include

• Linear least squares

• Weighted linear least squares

• Robust least squares

• Nonlinear least squares

Linear Least Squares
The Curve Fitting Toolbox uses the linear least squares method to fit a linear 
model to data. A linear model is defined as an equation that is linear in the 
coefficients. For example, polynomials are linear but Gaussians are not. To 
illustrate the linear least squares fitting process, suppose you have n data 
points that can be modeled by a first-degree polynomial.

ŷi

ri yi ŷi–=

residual = data – fit

S ri
2

i 1=

n

∑ yi ŷi–( )2

i 1=

n

∑= =

y p1x p2+=



Parametric Fitting
To solve this equation for the unknown coefficients p1 and p2, you write S as a 
system of n simultaneous linear equations in two unknowns. If n is greater 
than the number of unknowns, then the system of equations is overdetermined.

Because the least squares fitting process minimizes the summed square of the 
residuals, the coefficients are determined by differentiating S with respect to 
each parameter, and setting the result equal to zero.

The estimates of the true parameters are usually represented by b. 
Substituting b1 and b2 for p1 and p2, the previous equations become

where the summations run from i =1 to n. The normal equations are defined as

Solving for b1

Solving for b2 using the b1 value

S yi p1xi p2+( )–( )2

i 1=

n

∑=

p1∂
∂S 2 xi yi p1xi p2+( )–( )

i 1=

n

∑– 0= =

p2∂
∂S 2 yi p1xi p2+( )–( )

i 1=

n

∑– 0= =

xi yi b1xi b2+( )–( )∑ 0=

yi b1xi b2+( )–( )∑ 0=

b1 xi
2

∑ b2 xi∑+ xiyi∑=

b1 xi∑ nb2+ yi∑=

b1

n xiyi xi yi∑∑–∑
n xi

2 xi∑( )
2

–∑
----------------------------------------------------=
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As you can see, estimating the coefficients p1 and p2 requires only a few simple 
calculations. Extending this example to a higher degree polynomial is 
straightforward although a bit tedious. All that is required is an additional 
normal equation for each linear term added to the model.

In matrix form, linear models are given by the formula

where

• y is an n-by-1 vector of responses. 

• β is a m-by-1 vector of coefficients.

• X is the n-by-m design matrix for the model.

• ε is an n-by-1 vector of errors.

For the first-degree polynomial, the n equations in two unknowns are 
expressed in terms of y, X, and β as

The least squares solution to the problem is a vector b, which estimates the 
unknown vector of coefficients β. The normal equations are given by

b2
1
n
--- yi b1 xi∑–∑( )=

y Xβ ε+=

y1

y2

y3

.

.

.
yn

x1 1

x2 1

x3 1

.  

.  

.  
xn 1
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×=
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where XT is the transpose of the design matrix X. Solving for b,

In MATLAB, you can use the backslash operator to solve a system of 
simultaneous linear equations for unknown coefficients. Because inverting 
XTX can lead to unacceptable rounding errors, MATLAB uses QR 
decomposition with pivoting, which is a very stable algorithm numerically. 
Refer to “Arithmetic Operators” in the MATLAB documentation for more 
information about the backslash operator and QR decomposition.

You can plug b back into the model formula to get the predicted response 
values, .

A hat (circumflex) over a letter denotes an estimate of a parameter or a 
prediction from a model. The projection matrix H is called the hat matrix, 
because it puts the hat on y.

The residuals are given by

Refer to [1] or [2] for a complete description of the matrix representation of 
least squares regression.

Weighted Linear Least Squares
As described in “Basic Assumptions About the Error” on page 3-5, it is usually 
assumed that the response data is of equal quality and, therefore, has constant 
variance. If this assumption is violated, your fit might be unduly influenced by 
data of poor quality. To improve the fit, you can use weighted least squares 
regression where an additional scale factor (the weight) is included in the 
fitting process. Weighted least squares regression minimizes the error 
estimate

b XTX( )
1–
XTy=

ŷ

ŷ Xb Hy= =

H X XTX( )
1–
XT=

r y ŷ– 1 H–( )y= =

S wi yi ŷi–( )2

i 1=
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where wi are the weights. The weights determine how much each response 
value influences the final parameter estimates. A high-quality data point 
influences the fit more than a low-quality data point. Weighting your data is 
recommended if the weights are known, or if there is justification that they 
follow a particular form.

The weights modify the expression for the parameter estimates b in the 
following way,

where W is given by the diagonal elements of the weight matrix w.

You can often determine whether the variances are not constant by fitting the 
data and plotting the residuals. In the plot shown below, the data contains 
replicate data of various quality and the fit is assumed to be correct. The poor 
quality data is revealed in the plot of residuals, which has a “funnel” shape 
where small predictor values yield a bigger scatter in the response values than 
large predictor values.

b β̂ XTWX( )
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The weights you supply should transform the response variances to a constant 
value. If you know the variances of your data, then the weights are given by

If you don’t know the variances, you can approximate the weights using an 
equation such as

This equation works well if your data set contains replicates. In this case, n is 
the number of sets of replicates. However, the weights can vary greatly. A 
better approach might be to plot the variances and fit the data using a sensible 
model. The form of the model is not very important — a polynomial or power 
function works well in many cases.

Robust Least Squares 
As described in “Basic Assumptions About the Error” on page 3-5, it is usually 
assumed that the response errors follow a normal distribution, and that 
extreme values are rare. Still, extreme values called outliers do occur.

The main disadvantage of least squares fitting is its sensitivity to outliers. 
Outliers have a large influence on the fit because squaring the residuals 
magnifies the effects of these extreme data points. To minimize the influence 
of outliers, you can fit your data using robust least squares regression. The 
toolbox provides these two robust regression schemes:

• Least absolute residuals (LAR) — The LAR scheme finds a curve that 
minimizes the absolute difference of the residuals, rather than the squared 
differences. Therefore, extreme values have a lesser influence on the fit.

• Bisquare weights — This scheme minimizes a weighted sum of squares, 
where the weight given to each data point depends on how far the point is 
from the fitted line. Points near the line get full weight. Points farther from 

wi 1 σ2⁄=

wi
1
n
--- yi y–( )2

i 1=

n

∑
 
 
 
  1–

=
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the line get reduced weight. Points that are farther from the line than would 
be expected by random chance get zero weight.

For most cases, the bisquare weight scheme is preferred over LAR because it 
simultaneously seeks to find a curve that fits the bulk of the data using the 
usual least squares approach, and it minimizes the effect of outliers.

Robust fitting with bisquare weights uses an iteratively reweighted least 
squares algorithm, and follows this procedure:

1 Fit the model by weighted least squares.

2 Compute the adjusted residuals and standardize them. The adjusted 
residuals are given by

ri are the usual least squares residuals and hi are leverages that adjust the 
residuals by downweighting high-leverage data points, which have a large 
effect on the least squares fit. The standardized adjusted residuals are given 
by

K is a tuning constant equal to 4.685, and s is the robust variance given by 
MAD/0.6745 where MAD is the median absolute deviation of the residuals. 
Refer to [7] for a detailed description of h, K, and s.

3 Compute the robust weights as a function of u. The bisquare weights are 
given by

Note that if you supply your own regression weight vector, the final weight 
is the product of the robust weight and the regression weight.

radj
ri

1 hi–
-------------------=

u
radj
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----------=
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Parametric Fitting
4 If the fit converges, then you are done. Otherwise, perform the next iteration 
of the fitting procedure by returning to the first step.

The plot shown below compares a regular linear fit with a robust fit using 
bisquare weights. Notice that the robust fit follows the bulk of the data and is 
not strongly influenced by the outliers. 

Instead of minimizing the effects of outliers by using robust regression, you can 
mark data points to be excluded from the fit. Refer to “Excluding and 
Sectioning Data” on page 2-25 for more information.
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Nonlinear Least Squares
The Curve Fitting Toolbox uses the nonlinear least squares formulation to fit 
a nonlinear model to data. A nonlinear model is defined as an equation that is 
nonlinear in the coefficients, or a combination of linear and nonlinear in the 
coefficients. For example, Gaussians, ratios of polynomials, and power 
functions are all nonlinear.

In matrix form, nonlinear models are given by the formula

where

• y is an n-by-1 vector of responses.

• f is a function of β and X.

• β is a m-by-1 vector of coefficients.

• X is the n-by-m design matrix for the model.

• ε is an n-by-1 vector of errors.

Nonlinear models are more difficult to fit than linear models because the 
coefficients cannot be estimated using simple matrix techniques. Instead, an 
iterative approach is required that follows these steps:

1 Start with an initial estimate for each coefficient. For some nonlinear 
models, a heuristic approach is provided that produces reasonable starting 
values. For other models, random values on the interval [0,1] are provided.

2 Produce the fitted curve for the current set of coefficients. The fitted 
response value  is given by

and involves the calculation of the Jacobian of f(X,b), which is defined as a 
matrix of partial derivatives taken with respect to the coefficients.

y f X β,( ) ε+=

ŷ

ŷ f X b,( )=
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3 Adjust the coefficients and determine whether the fit improves. The 
direction and magnitude of the adjustment depend on the fitting algorithm. 
The toolbox provides these algorithms:

- Trust-region — This is the default algorithm and must be used if you 
specify coefficient constraints. It can solve difficult nonlinear problems 
more efficiently than the other algorithms and it represents an 
improvement over the popular Levenberg-Marquardt algorithm.

- Levenberg-Marquardt — This algorithm has been used for many years 
and has proved to work most of the time for a wide range of nonlinear 
models and starting values. If the trust-region algorithm does not produce 
a reasonable fit, and you do not have coefficient constraints, you should try 
the Levenberg-Marquardt algorithm.

- Gauss-Newton — This algorithm is potentially faster than the other 
algorithms, but it assumes that the residuals are close to zero. It’s included 
with the toolbox for pedagogical reasons and should be the last choice for 
most models and data sets.

For more information about the trust region algorithm, refer to [4] and to 
“Trust Region Methods for Nonlinear Minimization” in the Optimization 
Toolbox documentation. For more information about the 
Levenberg-Marquardt and Gauss-Newton algorithms, refer to “Nonlinear 
Least Squares Implementation” in the same guide. Additionally, the 
Levenberg-Marquardt algorithm is described in [5] and [6].

4 Iterate the process by returning to step 2 until the fit reaches the specified 
convergence criteria.

You can use weights and robust fitting for nonlinear models, and the fitting 
process is modified accordingly.

Because of the nature of the approximation process, no algorithm is foolproof 
for all nonlinear models, data sets, and starting points. Therefore, if you do not 
achieve a reasonable fit using the default starting points, algorithm, and 
convergence criteria, you should experiment with different options. Refer to 
“Specifying Fit Options” on page 3-23 for a description of how to modify the 
default options. Because nonlinear models can be particularly sensitive to the 
starting points, this should be the first fit option you modify.
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Library Models
The parametric library models provided by the Curve Fitting Toolbox are 
described below.

Exponentials
The toolbox provides a one-term and a two-term exponential model.

Exponentials are often used when the rate of change of a quantity is 
proportional to the initial amount of the quantity. If the coefficient associated 
with e is negative, y represents exponential decay. If the coefficient is positive, 
y represents exponential growth.

For example, a single radioactive decay mode of a nuclide is described by a 
one-term exponential. a is interpreted as the initial number of nuclei, b is the 
decay constant, x is time, and y is the number of remaining nuclei after a 
specific amount of time passes. If two decay modes exist, then you must use the 
two-term exponential model. For each additional decay mode, you add another 
exponential term to the model.

Examples of exponential growth include contagious diseases for which a cure 
is unavailable, and biological populations whose growth is uninhibited by 
predation, environmental factors, and so on.

Fourier Series
The Fourier series is a sum of sine and cosine functions that is used to describe 
a periodic signal. It is represented in either the trigonometric form or the 
exponential form. The toolbox provides the trigonometric Fourier series form 
shown below,

where a0 models any DC offset in the signal and is associated with the i = 0 
cosine term, w is the fundamental frequency of the signal, n is the number of 
terms (harmonics) in the series, and .

y a= ebx

y a= ebx cedx+

y a0 ai nwx( ) bi nwx( )sin+cos

i 1=

n

∑+=

1 n 8≤ ≤
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For more information about the Fourier series, refer to “Fourier Analysis and 
the Fast Fourier Transform” in the MATLAB documentation. For an example 
that fits the ENSO data to a custom Fourier series model, refer to “General 
Equation: Fourier Series Fit” on page 3-52.

Gaussian
The Gaussian model is used for fitting peaks, and is given by the equation

where a is the amplitude, b is the centroid (location), c is related to the peak 
width, n is the number of peaks to fit, and .

Gaussian peaks are encountered in many areas of science and engineering. For 
example, line emission spectra and chemical concentration assays can be 
described by Gaussian peaks. For an example that fits two Gaussian peaks and 
an exponential background, refer to “General Equation: Gaussian Fit with 
Exponential Background” on page 3-57.

Polynomials
Polynomial models are given by

where n + 1 is the order of the polynomial, n is the degree of the polynomial, 
and . The order gives the number of coefficients to be fit, and the 
degree gives the highest power of the predictor variable.

In this guide, polynomials are described in terms of their degree. For example, 
a third-degree (cubic) polynomial is given by

Polynomials are often used when a simple empirical model is required. The 
model can be used for interpolation or extrapolation, or it can be used to 
characterize data using a global fit. For example, the temperature-to-voltage 
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conversion for a Type J thermocouple in the 0o to 760o temperature range is 
described by a seventh-degree polynomial.

Note  If you do not require a global parametric fit and want to maximize the 
flexibility of the fit, piecewise polynomials might provide the best approach. 
Refer to “Nonparametric Fitting” on page 3-68 for more information.

The main advantages of polynomial fits include reasonable flexibility for data 
that is not too complicated, and they are linear, which means the fitting process 
is simple. The main disadvantage is that high-degree fits can become unstable. 
Additionally, polynomials of any degree can provide a good fit within the data 
range, but can diverge wildly outside that range. Therefore, you should 
exercise caution when extrapolating with polynomials. Refer to “Determining 
the Best Fit” on page 1-10 for examples of good and poor polynomial fits to 
census data.

Note that when you fit with high-degree polynomials, the fitting procedure 
uses the predictor values as the basis for a matrix with very large values, which 
can result in scaling problems. To deal with this, you should normalize the data 
by centering it at zero mean and scaling it to unit standard deviation. You 
normalize data by selecting the Center and scale X data check box on the 
Fitting GUI.

Power Series
The toolbox provides a one-term and a two-term power series model.

Power series models are used to describe a variety of data. For example, the 
rate at which reactants are consumed in a chemical reaction is generally 
proportional to the concentration of the reactant raised to some power.

y axb=

y a bxc+=
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Rationals
Rational models are defined as ratios of polynomials and are given by

where n is the degree of the numerator polynomial and , while m is the 
degree of the denominator polynomial and . Note that the coefficient 
associated with  is always 1. This makes the numerator and denominator 
unique when the polynomial degrees are the same.

In this guide, rationals are described in terms of the degree of the 
numerator/the degree of the denominator. For example, a quadratic/cubic 
rational equation is given by

Like polynomials, rationals are often used when a simple empirical model is 
required. The main advantage of rationals is their flexibility with data that has 
complicated structure. The main disadvantage is that they become unstable 
when the denominator is around zero. For an example that uses rational 
polynomials of various degrees, refer to “Example: Rational Fit” on page 3-41.

Sum of Sines
The sum of sines model is used for fitting periodic functions, and is given by the 
equation

where a is the amplitude, b is the frequency, and c is the phase constant for 
each sine wave term. n is the number of terms in the series and . This 
equation is closely related to the Fourier series described previously. The main 
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difference is that the sum of sines equation includes the phase constant, and 
does not include a DC offset term.

Weibull Distribution
The Weibull distribution is widely used in reliability and life (failure rate) data 
analysis. The toolbox provides the two-parameter Weibull distribution 

where a is the scale parameter and b is the shape parameter. Note that there 
is also a three-parameter Weibull distribution with x replaced by x – c where c 
is the location parameter. Additionally, there is a one-parameter Weibull 
distribution where the shape parameter is fixed and only the scale parameter 
is fitted. To use these distributions, you must create a custom equation.

Note that the Curve Fitting Toolbox does not fit Weibull probability 
distributions to a sample of data. Instead, it fits curves to response and 
predictor data such that the curve has the same shape as a Weibull 
distribution.

Custom Equations
If the toolbox library does not contain the desired parametric equation, you 
must create your own custom equation. However, if possible, you should use 
the library equations because they offer the best chance for rapid convergence. 
This is because

• For most models, optimal default coefficient starting points are calculated. 
For custom equations, the default starting points are chosen at random on 
the interval [0,1]. Refer to “Default Coefficient Parameters” on page 3-26 for 
more information.

• An analytic Jacobian is used instead of finite differencing.

• When using the Analysis GUI, analytic derivatives are calculated as well as 
analytic integrals if the integral can be expressed in closed form.

Note  To save custom equations for later use, you should save the 
curve-fitting session with the File-> Save Session menu item.

y abxb 1– e axb–=
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You create custom equations with the Create Custom Equation GUI. The GUI 
contains two panes: a pane for creating linear equations and a pane for creating 
general (nonlinear) equations. These panes are described below.

Linear Equations
Linear equations are defined as equations that are linear in the parameters. 
For example, the polynomial library equations are linear. The Linear 
Equations pane is shown below followed by a description of its parameters.

• Independent variable — Symbol representing the independent (predictor) 
variable. The default symbol is x.

• Equation — Symbol representing the dependent (response) variable 
followed by the linear equation. The default symbol is y.

- Unknown Coefficients — The unknown coefficients to be determined by 
the fit. The default symbols are a, b, c, and so on.

- Terms — Functions that depend only on the independent variable and 
constants. Note that if you attempt to define a term that contains a 
coefficient to be fitted, an error is returned.

- Unknown constant coefficient — If selected, a constant term is included 
in the equations to be fit. Otherwise, a constant term is not included.

- Add a term — Add a term to the equation. An unknown coefficient is 
automatically added for each new term.

- Remove last term — Remove the last term added to the equation.
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• Equation — The custom equation.

• Equation name — The name of the equation. By default, the name is 
automatically updated to be identical to the custom equation given by 
Equation. If you override the default, the name is no longer automatically 
updated.

General Equations
General (nonlinear) equations are defined as equations that are nonlinear in 
the parameters, or are a combination of linear and nonlinear in the 
parameters. For example, the exponential library equations are nonlinear. The 
General Equations pane is shown below followed by a brief description of its 
parameters.

• Independent variable — Symbol representing the independent (predictor) 
variable. The default symbol is x.

• Equation — Symbol representing the dependent (response) variable 
followed by the general equation. As you type in the terms of the equation, 
the unknown coefficients, associated starting values, and constraints 
automatically populate the table. By default, the starting values are 
randomly selected on the interval [0,1] and are unconstrained.

You can immediately change the default starting values and constraints in 
this table, or you can change them later using the Fit Options GUI.
2
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• Equation name — The name of the equation. By default, the name is 
automatically updated to be identical to the custom equation given by 
Equation. If you override the default, the name is no longer automatically 
updated.

Note that even if you define a linear equation, a nonlinear fitting procedure is 
used. Although this is allowed by the toolbox, it is an inefficient process and can 
result in less than optimal fitted coefficients. Instead, you should use the 
Linear Equations pane to define the equation.

Specifying Fit Options
You specify fit options with the Fit Options GUI. The fit options for the 
single-term exponential are shown below. The coefficient starting values and 
constraints are for the census data.

The available GUI options depend on whether you are fitting your data using 
a linear model, a nonlinear model, or a nonparametric fit type. All the options 
described below are available for nonlinear models. Method, Robust, and 
coefficient constraints (Lower and Upper) are available for linear models. 
Interpolants and smoothing splines include Method, but no configurable 
options.

Fitting method and algorithm

Fit convergence criteria

Coefficient parameters

Finite differencing parameters
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Fitting Method and Algorithm

• Method — The fitting method.

The method is automatically selected based on the library or custom model 
you use. For linear models, the method is LinearLeastSquares. For 
nonlinear models, the method is NonlinearLeastSquares.

• Robust — Specify whether to use the robust least squares fitting method. 
The values are

- Off — Do not use robust fitting (default).

- On — Fit with default robust method (bisquare weights).

- LAR — Fit by minimizing the least absolute residuals (LAR).

- Bisquare — Fit by minimizing the summed square of the residuals, and 
downweight outliers using bisquare weights. In most cases, this is the best 
choice for robust fitting.

• Algorithm — Algorithm used for the fitting procedure:

- Trust-Region — This is the default algorithm and must be used if you 
specify coefficient constraints.

- Levenberg-Marquardt — If the trust-region algorithm does not produce 
a reasonable fit, and you do not have coefficient constraints, you should try 
the Levenberg-Marquardt algorithm.

- Gauss-Newton — This algorithm is included for pedagogical reasons and 
should be the last choice for most models and data sets.

Finite Differencing Parameters

• DiffMinChange — Minimum change in coefficients for finite difference 
Jacobians. The default value is 10-8.

• DiffMaxChange — Maximum change in coefficients for finite difference 
Jacobians. The default value is 0.1.

Fit Convergence Criteria

• MaxFunEvals — Maximum number of function (model) evaluations 
allowed. The default value is 600.

• MaxIter — Maximum number of fit iterations allowed. The default value is 
400.
4



Parametric Fitting
• TolFun — Termination tolerance used on stopping conditions involving the 
function (model) value. The default value is 10-6.

• TolX — Termination tolerance used on stopping conditions involving the 
coefficients. The default value is 10-6.

Coefficient Parameters

• Unknowns — Symbols for the unknown coefficients to be fitted.

• StartPoint — The coefficient starting values. The default values depend on 
the model. For rational, Weibull, and custom models, default values are 
randomly selected within the range [0,1]. For all other nonlinear library 
models, the starting values depend on the data set and are calculated 
heuristically.

• Lower — Lower bounds on the fitted coefficients. The bounds are used only 
with the trust region fitting algorithm. The default lower bounds for most 
library models are -Inf, which indicates that the coefficients are 
unconstrained. However, a few models have finite default lower bounds. For 
example, Gaussians have the width parameter constrained so that it cannot 
be less than 0.

• Upper — Upper bounds on the fitted coefficients. The bounds are used only 
with the trust region fitting algorithm. The default upper bounds for all 
library models are Inf, which indicates that the coefficients are 
unconstrained.

For more information about these fit options, refer to “Optimization Options 
Parameters” in the Optimization Toolbox documentation.
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Default Coefficient Parameters
The default coefficient starting points and constraints for library and custom 
models are given below. If the starting points are optimized, then they are 
calculated heuristically based on the current data set. Random starting points 
are defined on the interval [0,1] and linear models do not require starting 
points. 

If a model does not have constraints, the coefficients have neither a lower 
bound nor an upper bound. You can override the default starting points and 
constraints by providing your own values using the Fit Options GUI. 

Note that the sum of sines and Fourier series models are particularly sensitive 
to starting points, and the optimized values might be accurate for only a few 
terms in the associated equations. For an example that overrides the default 
starting values for the sum of sines model, refer to “Example: Sectioning 
Periodic Data” on page 2-35.

Table 3-1:  Default Starting Points and Constraints

Model Starting Points Constraints

Custom linear N/A None

Custom nonlinear Random None

Exponentials Optimized None

Fourier series Optimized None

Gaussians Optimized ci > 0

Polynomials N/A None

Power series Optimized None

Rationals Random None

Sum of sines Optimized bi > 0

Weibull Random a, b > 0
6
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Evaluating the Goodness of Fit
After fitting data with one or more models, you should evaluate the goodness 
of fit. A visual examination of the fitted curve displayed in the Curve Fitting 
Tool should be your first step. Beyond that, the toolbox provides these goodness 
of fit measures for both linear and nonlinear parametric fits:

• Residuals

• Goodness of fit statistics

• Confidence and prediction bounds

You can group these measures into two types: graphical and numerical. The 
residuals and prediction bounds are graphical measures, while the goodness of 
fit statistics and confidence bounds are numerical measures.

Generally speaking, graphical measures are more beneficial than numerical 
measures because they allow you to view the entire data set at once, and they 
can easily display a wide range of relationships between the model and the 
data. The numerical measures are more narrowly focused on a particular 
aspect of the data and often try to compress that information into a single 
number. In practice, depending on your data and analysis requirements, you 
might need to use both types to determine the best fit.

Note that it is possible that none of your fits can be considered the best one. In 
this case, it might be that you need to select a different model. Conversely, it is 
also possible that all the goodness of fit measures indicate that a particular fit 
is the best one. However, if your goal is to extract fitted coefficients that have 
physical meaning, but your model does not reflect the physics of the data, the 
resulting coefficients are useless. In this case, understanding what your data 
represents and how it was measured is just as important as evaluating the 
goodness of fit.

Residuals
The residuals from a fitted model are defined as the differences between the 
response data and the fit to the response data at each predictor value.

residual = data - fit

You display the residuals in the Curve Fitting Tool by selecting the menu item 
View->Residuals.
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Mathematically, the residual for a specific predictor value is the difference 
between the response value y and the predicted response value .

Assuming the model you fit to the data is correct, the residuals approximate 
the random errors. Therefore, if the residuals appear to behave randomly, it 
suggests that the model fits the data well. However, if the residuals display a 
systematic pattern, it is a clear sign that the model fits the data poorly.

A graphical display of the residuals for a first degree polynomial fit is shown 
below. The top plot shows that the residuals are calculated as the vertical 
distance from the data point to the fitted curve. The bottom plot shows that the 
residuals are displayed relative to the fit, which is the zero line.

The residuals appear randomly scattered around zero indicating that the 
model describes the data well.
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0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12 Data
Linear Fit

0 1 2 3 4 5 6 7 8 9 10 11

−3

−2

−1

0

1

2

3 Residuals
8



Parametric Fitting
A graphical display of the residuals for a second-degree polynomial fit is shown 
below. The model includes only the quadratic term, and does not include a 
linear or constant term. 

The residuals are systematically positive for much of the data range indicating 
that this model is a poor fit for the data.

Goodness of Fit Statistics
After using graphical methods to evaluate the goodness of fit, you should 
examine the goodness of fit statistics. The Curve Fitting Toolbox supports 
these goodness of fit statistics for parametric models:

• The sum of squares due to error (SSE)

• R-square

• Adjusted R-square

• Root mean squared error (RMSE)
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For the current fit, these statistics are displayed in the Results list box in the 
Fit Editor. For all fits in the current curve-fitting session, you can compare the 
goodness of fit statistics in the Table of fits.

Sum of Squares Due to Error. This statistic measures the total deviation of the 
response values from the fit to the response values. It is also called the summed 
square of residuals and is usually labeled as SSE.

A value closer to 0 indicates a better fit. Note that the SSE was previously 
defined in “The Least Squares Fitting Method” on page 3-6.

R-Square. This statistic measures how successful the fit is in explaining the 
variation of the data. Put another way, R-square is the square of the correlation 
between the response values and the predicted response values. It is also called 
the square of the multiple correlation coefficient and the coefficient of multiple 
determination.

R-square is defined as the ratio of the sum of squares of the regression (SSR) 
and the total sum of squares (SST). SSR is defined as

SST is also called the sum of squares about the mean, and is defined as

where SST = SSR + SSE. Given these definitions, R-square is expressed as

R-square can take on any value between 0 and 1, with a value closer to 1 
indicating a better fit. For example, an R2 value of 0.8234 means that the fit 
explains 82.34% of the total variation in the data about the average.

SSE wi yi ŷi–( )2

i 1=

n

∑=

SSR wi ŷi y–( )2

i 1=

n

∑=

SST wi yi y–( )2

i 1=

n

∑=

R-square SSR
SST
------------- 1= SSE

SST
-------------–=
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Parametric Fitting
If you increase the number of fitted coefficients in your model, R-square might 
increase although the fit may not improve. To avoid this situation, you should 
use the degrees of freedom adjusted R-square statistic described below.

Note that it is possible to get a negative R-square for equations that do not 
contain a constant term. If R-square is defined as the proportion of variance 
explained by the fit, and if the fit is actually worse than just fitting a horizontal 
line, then R-square is negative. In this case, R-square cannot be interpreted as 
the square of a correlation.

Degrees of Freedom Adjusted R-Square. This statistic uses the R-square statistic 
defined above, and adjusts it based on the residual degrees of freedom. The 
residual degrees of freedom is defined as the number of response values n 
minus the number of fitted coefficients m estimated from the response values.

v indicates the number of independent pieces of information involving the n 
data points that are required to calculate the sum of squares. Note that if 
parameters are bounded and one or more of the estimates are at their bounds, 
then those estimates are regarded as fixed. The degrees of freedom is increased 
by the number of such parameters.

The adjusted R-square statistic is generally the best indicator of the fit quality 
when you add additional coefficients to your model.

The adjusted R-square statistic can take on any value less than or equal to 1, 
with a value closer to 1 indicating a better fit.

Root Mean Squared Error. This statistic is also known as the fit standard error 
and the standard error of the regression

where MSE is the mean square error or the residual mean square

A RMSE value closer to 0 indicates a better fit.

v n m–=

adjusted R-square 1 SSE n 1–( )
SST v( )

-------------------------------–=

RMSE s MSE= =

MSE SSE
v

-------------=
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Confidence and Prediction Bounds
With the Curve Fitting Toolbox, you can calculate confidence bounds for the 
fitted coefficients, and prediction bounds for new observations or for the fitted 
function. Additionally, for prediction bounds, you can calculate simultaneous 
bounds, which take into account all predictor values, or you can calculate 
nonsimultaneous bounds, which take into account only individual predictor 
values. The confidence bounds are numerical, while the prediction bounds are 
displayed graphically. 

The available confidence and prediction bounds are summarized below.

Note  Prediction bounds are often described as confidence bounds because 
you are calculating a confidence interval for a predicted response.

Confidence and prediction bounds define the lower and upper values of the 
associated interval, and define the width of the interval. The width of the 
interval indicates how uncertain you are about the fitted coefficients, the 
predicted observation, or the predicted fit. For example, a very wide interval 
for the fitted coefficients can indicate that you should use more data when 
fitting before you can say anything very definite about the coefficients.

The bounds are defined with a level of certainty that you specify. The level of 
certainty is often 95%, but it can be any value such as 90%, 99%, 99.9%, and so 
on. For example, you might want to take a 5% chance of being incorrect about 
predicting a new observation. Therefore, you would calculate a 95% prediction 
interval. This interval indicates that you have a 95% chance that the new 
observation is actually contained within the lower and upper prediction 
bounds. 

Table 3-2:  Types of Confidence and Prediction Bounds 

Interval Type Description

Fitted coefficients Confidence bounds for the fitted coefficients

New observation Prediction bounds for a new observation (response 
value)

New function Prediction bounds for a new function value
2



Parametric Fitting
Calculating and Displaying Confidence Bounds. The confidence bounds for fitted 
coefficients are given by

where b are the coefficients produced by the fit, t is the inverse of Student's T 
cumulative distribution function, and S is a vector of the diagonal elements 
from the covariance matrix of the coefficient estimates, (XTX)-1s2. X is the 
design matrix, XT is the transpose of X, and s2 is the mean squared error. 

Refer to the tinv function, included with the Statistics Toolbox, for a 
description of t. Refer to “Linear Least Squares” on page 3-6 for more 
information about X and XT.

The confidence bounds are displayed in the Results list box in the Fit Editor 
using the following format.

p1 = 1.275  (1.113, 1.437)

The fitted value for the coefficient p1 is 1.275, the lower bound is 1.113, the 
upper bound is 1.437, and the interval width is 0.324. By default, the 
confidence level for the bounds is 95%. You can change this level to any value 
with the View->Confidence Level menu item in the Curve Fitting Tool.

You can calculate confidence intervals at the command line with the confint 
function.

Calculating and Displaying Prediction Bounds. As mentioned previously, you can 
calculate prediction bounds for a new observation or for the fitted curve. In 
both cases, the prediction is based on an existing fit to the data. Additionally, 
the bounds can be simultaneous and measure the confidence for all predictor 
values, or they can be nonsimultaneous and measure the confidence only for a 
single predetermined predictor value. If you are predicting a new observation, 
nonsimultaneous bounds measure the confidence that the new observation lies 
within the interval given a single predictor value. Simultaneous bounds 
measure the confidence that a new observation lies within the interval 
regardless of the predictor value.

C b t S±=
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The nonsimultaneous prediction bounds for a new observation at the predictor 
value x are given by

where s2 is the mean squared error, t is the inverse of Student's T cumulative 
distribution function, and S is the covariance matrix of the coefficient 
estimates, (XTX)-1s2. Note that x is defined as a row vector of the Jacobian 
evaluated at a specified predictor value.

The simultaneous prediction bounds for a new observation and for all predictor 
values are given by

where f is the inverse of the F cumulative distribution function. Refer to the 
finv function, included with the Statistics Toolbox, for a description of f.

The nonsimultaneous prediction bounds for the function at a single predictor 
value x are given by

The simultaneous prediction bounds for the function and for all predictor 
values are given by 

You can graphically display prediction bounds two ways: using the Curve 
Fitting Tool or using the Analysis GUI. With the Curve Fitting Tool, you can 
display nonsimultaneous prediction bounds for new observations with 
View->Prediction Bounds. By default, the confidence level for the bounds is 
95%. You can change this level to any value with View->Confidence Level. 
With the Analysis GUI, you can display nonsimultaneous prediction bounds for 
the function or for new observations.

You can display numerical prediction bounds of any type at the command line 
with the predint function.

Pn o, ŷ t s2 xSx'+±=

Ps o, ŷ f s2 xSx'+±=

Pn f, ŷ t xSx'±=

Ps f, ŷ f xSx'±=
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To understand the quantities associated with each type of prediction interval, 
recall that the data, fit, and residuals (random errors) are related through the 
formula

data = fit + residuals

Suppose you plan to take a new observation at the predictor value xn+1. Call 
the new observation yn+1(xn+1) and the associated error en+1. Then yn+1(xn+1) 
satisfies the equation

where f(xn+1) is the true but unknown function you want to estimate at xn+1. 
The likely values for the new observation or for the estimated function are 
provided by the nonsimultaneous prediction bounds.

If instead you want the likely value of the new observation to be associated 
with any predictor value, the previous equation becomes

The likely values for this new observation or for the estimated function are 
provided by the simultaneous prediction bounds. 

The types of prediction bounds are summarized below.

The nonsimultaneous and simultaneous prediction bounds for a new 
observation and the fitted function are shown below. Each graph contains three 
curves: the fit, the lower confidence bounds, and the upper confidence bounds. 
The fit is a single-term exponential to generated data and the bounds reflect a 
95% confidence level. Note that the intervals associated with a new observation 

Table 3-3:  Types of Prediction Bounds

Type of Bound Associated Equation

Observation Nonsimultaneous yn+1(xn+1)

Simultaneous yn+1(x), globally for any x

Function Nonsimultaneous f(xn+1)

Simultaneous f(x), simultaneously for all x

yn 1+ xn 1+( ) f xn 1+( ) en 1++=

yn 1+ x( ) f x( ) e+=
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are wider than the fitted function intervals because of the additional 
uncertainty in predicting a new response value (the fit plus random errors).
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Example: Evaluating the Goodness of Fit
This example fits several polynomial models to generated data and evaluates 
the goodness of fit. The data is cubic and includes a range of missing values.

rand('state',0)
x = [1:0.1:3 9:0.1:10]';
c = [2.5 -0.5 1.3 -0.1]; 
y =  c(1) + c(2)*x + c(3)*x.^2 + c(4)*x.^3 + (rand(size(x))-0.5);

After you import the data, fit it using a cubic polynomial and a fifth degree 
polynomial. The data, fits, and residuals are shown below. You display the 
residuals in the Curve Fitting Tool with the View->Residuals menu item.

Both models appear to fit the data well, and the residuals appear to be 
randomly distributed around zero. Therefore, a graphical evaluation of the fits 
does not reveal any obvious differences between the two equations.

Both fits appear to 
model the data well. 

The residuals for both 
fits appear to be 
randomly distributed.
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The numerical fit results are shown below.

As expected, the fit results for poly3 are reasonable because the generated data 
is cubic. The 95% confidence bounds on the fitted coefficients indicate that they 
are acceptably accurate. However, the 95% confidence bounds for poly5 
indicate that the fitted coefficients are not known accurately.

The goodness of fit statistics are shown below. By default, the adjusted 
R-square and RMSE statistics are not displayed in the Table of Fits. To 
display these statistics, open the Table Options GUI by clicking the Table 
options button. The statistics do not reveal a substantial difference between 
the two equations.

The cubic fit coefficients are 
accurately known. 

The quintic fit coefficients 
are not accurately known. 

The statistics do not reveal a substantial 
difference between the two equations. 

Open the Table Options GUI and 
select Adj R-sq and RMSE. 
8
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The 95% nonsimultaneous prediction bounds for new observations are shown 
below. To display prediction bounds in the Curve Fitting Tool, select the 
View->Prediction Bounds menu item. Alternatively, you can view prediction 
bounds for the function or for new observations using the Analysis GUI.

The prediction bounds for poly3 indicate that new observations can be 
predicted accurately throughout the entire data range. This is not the case for 
poly5. It has wider prediction bounds in the area of the missing data, 
apparently because the data does not contain enough information to estimate 
the higher degree polynomial terms accurately. In other words, a fifth-degree 
polynomial overfits the data. You can confirm this by using the Analysis GUI 
to compute bounds for the functions themselves.

The 95% prediction bounds for poly5 are shown below. As you can see, the 
uncertainty in estimating the function is large in the area of the missing data. 
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Therefore, you would conclude that more data must be collected before you can 
make accurate predictions using a fifth-degree polynomial.

In conclusion, you should examine all available goodness of fit measures before 
deciding on the best fit. A graphical examination of the fit and residuals should 
always be your initial approach. However, some fit characteristics are revealed 
only through numerical fit results, statistics, and prediction bounds.
0



Parametric Fitting
Example: Rational Fit
This example fits measured data using a rational model. The data describes the 
coefficient of thermal expansion for copper as a function of temperature in 
degrees Kelvin.

To get started, load the thermal expansion data from the file hahn1.mat, which 
is provided with the toolbox.

load hahn1

The workspace now contains two new variables, temp and thermex:

• temp is a vector of temperatures in degrees Kelvin.

• thermex is a vector of thermal expansion coefficients for copper.

Import these two variables into the Curve Fitting Tool and name the data set 
CuThermEx.

For this data set, you will find the rational equation that produces the best fit. 
As described in “Library Models” on page 3-16, rational models are defined as 
a ratio of polynomials

where n is the degree of the numerator polynomial and m is the degree of the 
denominator polynomial. Note that the rational equations are not associated 
with physical parameters of the data. Instead, they provide a simple and 
flexible empirical model that you can use for interpolation and extrapolation.

y
p1xn p2xn 1– … pn 1++ + +

xm q1xm 1– … qm+ + +
------------------------------------------------------------------------=
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As you can see by examining the shape of the data, a reasonable initial choice 
for the rational model is quadratic/quadratic. The Fitting GUI configured for 
this equation is shown below.

Begin the fitting process with a 
quadratic/quadratic rational fit.
2
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The data, fit, and residuals are shown below. 

The fit clearly misses the data for the smallest and largest predictor values. 
Additionally, the residuals show a strong pattern throughout the entire data 
set indicating that a better fit is possible.

The fit clearly misses 
some of the data. 

The residuals show a 
strong pattern indicating 
a better fit is possible. 
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For the next fit, try a cubic/cubic equation. The data, fit, and residuals are 
shown below.

The numerical results shown below indicate that the fit did not converge.

The fit exhibits several 
discontinuities around the 
zeros of the denominator. 

The fit did not converge, which 
indicates that the model might 
be a poor choice for the data.
4
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Although the message in the Results window indicates that you might improve 
the fit if you increase the maximum number of iterations, a better choice at this 
stage of the fitting process is to use a different rational equation because the 
current fit contains several discontinuities. These discontinuities are due to the 
function blowing up at predictor values that correspond to the zeros of the 
denominator.

As the next try, fit the data using a cubic/quadratic equation. The data, fit, and 
residuals are shown below.

The fit is well behaved over the entire data range, and the residuals are 
randomly scattered about zero. Therefore, you can confidently use this fit for 
further analysis.

The fit is well behaved 
over the entire data range. 

The residuals are 
randomly scattered 
about zero.
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Example: Fitting with Custom Equations
You can define your own equations with the Create Custom Equation GUI. You 
open this GUI one of two ways: 

• From the Curve Fitting Tool, select Tools->Custom Equation.

• From the Fitting GUI, select Custom Equations from the Type of fit list, 
then click the New Equation button.

The Create Custom Equation GUI contains two panes: one for creating linear 
custom equations and one for creating general (nonlinear) custom equations. 
These panes are described in the following examples.

Linear Equation: Legendre Polynomial Fit
This example fits data using several custom linear equations. The data is 
generated, and is based on the nuclear reaction 12C(e,e'α)8Be. The equations 
use sums of Legendre polynomial terms.

Consider an experiment in which 124 MeV electrons are scattered from 12C 
nuclei. In the subsequent reaction, alpha particles are emitted and produce the 
residual nuclei 8Be. By analyzing the number of alpha particles emitted as a 
function of angle, you can deduce certain information regarding the nuclear 
dynamics of 12C. The reaction kinematics are shown below.

The data is collected by placing solid state detectors at values of θα ranging 
from 10o to 240o in 10o increments.

θe'

θα

12C

α

e'

e

e is the incident electron.
12C is the carbon target.

q is the momentum transferred to 8Be.
e' is the scattered electron.
α is the emitted alpha particle.
θe' is the electron scattering angle.
θα is the alpha scattering angle.q
6
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It is sometimes useful to describe a variable expressed as a function of angle in 
terms of Legendre polynomials

where Pn(x) is a Legendre polynomial of degree n, x is cos(θα), and an are the 
coefficients of the fit. Refer to the legendre function for information about 
generating Legendre polynomials.

For the alpha-emission data, you can directly associate the coefficients with the 
nuclear dynamics by invoking a theoretical model, which is described in [8]. 
Additionally, the theoretical model introduces constraints for the infinite sum 
shown above. In particular, by considering the angular momentum of the 
reaction, a fourth-degree Legendre polynomial using only even terms should 
describe the data effectively.

You can generate Legendre polynomials with Rodrigues’ formula:

The Legendre polynomials up to fourth degree are given below.

Table 3-4:  Legendre Polynomials up to Fourth Degree

n Pn(x)

0 1

1 x

2 (1/2)(3x2– 1)

3 (1/2)(5x3 – 3x)

4 (1/8)(35x4 – 30x2 + 3)

y x( ) anPn x( )

n 0=

∞

∑=

Pn x( ) 1

2nn!
------------ d

dx
------- 
 n

x2 1–( )
n

=
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The first step is to load the 12C alpha-emission data from the file 
carbon12alpha.mat, which is provided with the toolbox. 

load carbon12alpha

The workspace now contains two new variables, angle and counts:

• angle is a vector of angles (in radians) ranging from 10o to 240o in 10o 
increments.

• counts is a vector of raw alpha particle counts that correspond to the 
emission angles in angle.

Import these two variables into the Curve Fitting Toolbox and name the data 
set C12Alpha.

The Fit Editor for a custom equation fit type is shown below.

Specify a meaningful fit name, 
the data set, and the type of fit.

Open the Create Custom 
Equations GUI.
8
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Fit the data using a fourth-degree Legendre polynomial with only even terms:

Because the Legendre polynomials depend only on the predictor variable and 
constants, you use the Linear Equations pane on the Create Custom Equation 
GUI. This pane is shown below for the model given by y1(x). Note that because 
angle is given in radians, the argument of the Legendre terms is given by 
cos(θα).

y1 x( ) a0 a2
1
2
--- 
  3x2 1–( ) a4

1
8
--- 
  35x4 30x2 3+–( )+ +=

Create a custom linear equation 
using even Legendre terms up 
to fourth degree.

Specify a meaningful 
equation name.
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The fit and residuals are shown below. The fit appears to follow the trend of the 
data well, while the residuals appear to be randomly distributed and do not 
exhibit any systematic behavior.

The numerical fit results are shown below. The 95% confidence bounds indicate 
that the coefficients associated with P0(x) and P4(x) are known fairly 
accurately, but that the P2(x) coefficient has a relatively large uncertainty. 

The coefficients associated with P0(x) and 
P4(x) are known accurately, but the P2(x) 
coefficient has a larger uncertainty.
0
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To confirm the theoretical argument that the alpha-emission data is best 
described by a fourth-degree Legendre polynomial with only even terms, fit the 
data using both even and odd terms:

The Linear Equations pane of the Create Custom Equation GUI is shown below 
for the model given by y2(x).

The numerical results indicate that the odd Legendre terms do not contribute 
significantly to the fit, and the even Legendre terms are essentially unchanged 
from the previous fit. This confirms that the initial model choice is the best one.

y2 x( ) y1 x( ) a1x a3
1
2
--- 
  5x3 3x–( )+ +=

Create a custom linear equation 
using even and odd Legendre 
terms up to fourth degree.

Specify a meaningful 
equation name.

Click Add a term to add the odd 
Legendre terms.

The odd Legendre coefficients should not be 
included in the fit because their values are 
small and their confidence bounds are large.
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General Equation: Fourier Series Fit
This example fits the ENSO data using several custom nonlinear equations. 
The ENSO data consists of monthly averaged atmospheric pressure differences 
between Easter Island and Darwin, Australia. This difference drives the trade 
winds in the southern hemisphere.

As shown in “Example: Smoothing Data” on page 2-21, the ENSO data is 
clearly periodic, which suggests it can be described by a Fourier series

where ai and bi are the amplitudes, and ci are the periods (cycles) of the data. 
The question to be answered in this example is how many cycles exist? As a 
first attempt, assume a 12 month cycle and fit the data using one sine term and 
one cosine term. 

If the fit does not describe the data well, add additional sine and cosine terms 
with unique period coefficients until a good fit is obtained.

Because there is an unknown coefficient c1 included as part of the 
trigonometric function arguments, the equation is nonlinear. Therefore, you 
must specify the equation using the General Equations pane of the Create 
Custom Equation GUI. This pane is shown below for the equation given by 
y1(x).

y x( ) a0 ai 2π x
ci
---- 

  bi 2π x
ci
---- 

 sin+cos

i 1=

∞

∑+=

y1 x( ) a0 a1 2π x
c1
----- 

  b1 2π x
c1
----- 

 sin+cos+=

Assume one 12 month cycle.

By default, the coefficients are 
unbounded and have random 
starting values between 0 and 1. 

Specify a meaningful 
equation name.
2
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Note that the toolbox includes the Fourier series as a nonlinear library 
equation. However, the library equation does not meet the needs of this 
example because its terms are defined as fixed multiples of the fundamental 
frequency w. Refer to “Fourier Series” on page 3-16 for more information.

The numerical results shown below indicate that the fit does not describe the 
data well. In particular, the fitted value for c1 is unreasonably small. Because 
the starting points are randomly selected, your initial fit results might differ 
from the results shown here.

To assist the fitting procedure, constrain c1 to a value between 10 and 14. To 
define constraints for unknown coefficients, use the Fit Options GUI, which 
you open by clicking the Fit options button in the Fitting GUI.

Constrain the cycle to be 
between 10 and 14 months.
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The fit, residuals, and numerical results are shown below. 

The fit appears to be reasonable for some of the data points but clearly does not 
describe the entire data set very well. As predicted, the numerical results 
indicate a cycle of approximately 12 months. However, the residuals show a 
systematic periodic distribution indicating that there are additional cycles that 
you should include in the fit equation. Therefore, as a second attempt, add an 
additional sine and cosine term to y1(x)

and constrain the upper and lower bounds of c2 to be roughly twice the bounds 
used for c1.

The fit for one cycle.

The residuals indicate that at 
least one more cycle exists.

The numerical results 
indicate a 12 month cycle.

y2 x( ) y1 x( ) a2 2π x
c2
----- 

  b2 2π x
c2
----- 

 sin+cos+=
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The fit, residuals, and numerical results are shown below. 

The fit appears to be reasonable for most of the data points. However, the 
residuals indicate that you should include another cycle to the fit equation. 
Therefore, as a third attempt, add an additional sine and cosine term to y2(x)

and constrain the lower bound of c3 to be roughly three times the value of c1.

The fit for two cycles.

The residuals indicate that 
one more cycle might exist.

The numerical results indicate 
an additional 22 month cycle.

y3 x( ) y2 x( ) a3 2π x
c3
----- 

  b3 2π x
c3
----- 

 sin+cos+=
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The fit, residuals, and numerical results are shown below. 

The fit is an improvement over the previous two fits, and appears to account 
for most of the cycles present in the ENSO data set. The residuals appear 
random for most of the data, although a pattern is still visible indicating that 
additional cycles may be present, or you can improve the fitted amplitudes.

In conclusion, Fourier analysis of the data reveals three significant cycles. The 
annual cycle is the strongest, but cycles with periods of approximately 44 and 
22 months are also present. These cycles correspond to El Nino and the 
Southern Oscillation (ENSO).

The fit for three cycles.

The residuals appear 
fairly random for most 
of the data set.

The numerical results indicate 
12, 22, and 44 month cycles.
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General Equation: Gaussian Fit with Exponential Background
This example fits two poorly resolved Gaussian peaks on a decaying 
exponential background using a general (nonlinear) custom model. To get 
started, load the data from the file gauss3.mat, which is provided with the 
toolbox.

load gauss3

The workspace now contains two new variables, xpeak and ypeak:

• xpeak is a vector of predictor values.

• ypeak is a vector of response values.

Import these two variables into the Curve Fitting Toolbox and accept the 
default data set name ypeak vs. xpeak.

You will fit the data with the following equation 

where ai are the peak amplitudes, bi are the peak centroids, and ci are related 
to the peak widths. Because there are unknown coefficients included as part of 
the exponential function arguments, the equation is nonlinear. Therefore, you 
must specify the equation using the General Equations pane of the Create 
Custom Equation GUI. This pane is shown below for y(x).

y x( ) ae bx– a1e

x b1–
c1

-------------- 
 

2

–
a2e

x b2–
c2

-------------- 
 

2

–
+ +=

Two Gaussian peaks on an 
exponential background.

By default, the coefficients are 
unbounded and have random 
starting values between 0 and 1. 
3-57



3 Fitting Data

3-5
The data, fit, and numerical fit results are shown below. Clearly, the fit is poor. 

Because the starting points are randomly selected, your initial fit results might 
differ from the results shown here.
8
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The results include this warning message.

Fit computation did not converge:
Maximum number of function evaluations exceeded. Increasing
MaxFunEvals (in fit options) may allow for a better fit, or 
the current equation may not be a good model for the data.

To improve the fit for this example, specify reasonable starting points for the 
coefficients. Deducing the starting points is particularly easy for the current 
model because the Gaussian coefficients have a straightforward interpretation 
and the exponential background is well defined. Additionally, as the peak 
amplitudes and widths cannot be negative, constrain a1, a2, c1, and c2 to be 
greater then zero.

To define starting values and constraints for unknown coefficients, use the Fit 
Options GUI, which you open by clicking the Fit options button. The starting 
values and constraints are shown below.

Specify reasonable coefficient 
starting values and constraints.
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The data, fit, residuals, and numerical results are shown below. 
0



Parametric Fitting
Example: Robust Fit
This example fits data that is assumed to contain one outlier. The data consists 
of the 2000 United States presidential election results for the state of Florida. 
The fit model is a first degree polynomial and the fit method is robust linear 
least squares with bisquare weights.

In the 2000 presidential election, many residents of Palm Beach County, 
Florida, complained that the design of the election ballot was confusing, which 
they claim led them to vote for the Reform candidate Pat Buchanan instead of 
the Democratic candidate Al Gore. The so-called “butterfly ballot” was used 
only in Palm Beach County and only for the election-day ballots for the 
presidential race. As you will see, the number of Buchanan votes for Palm 
Beach is far removed from the bulk of data, which suggests that the data point 
should be treated as an outlier.

To get started, load the Florida election result data from the file flvote2k.mat, 
which is provided with the toolbox.

load flvote2k

The workspace now contains these three new variables:

• buchanan is a vector of votes for the Reform Party candidate Pat Buchanan.

• bush is a vector of votes for the Republican Party candidate George Bush.

• gore is a vector of votes for the Democratic Party candidate Al Gore.

Each variable contains 68 elements, which correspond to the 67 Florida 
counties plus the absentee ballots. The names of the counties are given in the 
variable counties. From these variables, create two data sets with the 
Buchanan votes as the response data: buchanan vs. bush and buchanan vs. 
gore.

For this example, assume that the relationship between the response and 
predictor data is linear with an offset of zero.

buchanan votes = (bush votes)(m1)
buchanan votes = (gore votes)(m2)

m1 is the number of Bush votes expected for each Buchanan vote, and m2 is 
the number of Gore votes expected for each Buchanan vote.
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To create a first-degree polynomial equation with zero offset, you must create 
a custom linear equation. As described in “Example: Fitting with Custom 
Equations” on page 3-46, you can create a custom equation using the Fitting 
GUI by selecting Custom Equations from the Type of fit list, and then 
clicking the New Equation button.

The Linear Equations pane of the Create Custom Equation GUI is shown 
below.

Before fitting, you should exclude the data point associated with the absentee 
ballots from each data set because these voters did not use the butterfly ballot. 
As described in “Marking Outliers” on page 2-27, you can exclude individual 
data points from a fit either graphically or numerically using the Exclude GUI. 
For this example, you should exclude the data numerically. The index of the 
absentee ballot data is given by

ind = find(strcmp(counties,'Absentee Ballots'))
ind =
    68

Create a first-degree 
polynomial with zero offset.

Assign a meaningful name 
to the equation.

Clear this check box.
2
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The Exclude GUI is shown below. 

The exclusion rule is named AbsenteeVotes. You use the Fitting GUI to 
associate an exclusion rule with the data set to be fit.

For each data set, perform a robust fit with bisquare weights using the 
FlaElection equation defined above. For comparison purposes, also perform a 
regular linear least squares fit. Refer to “Robust Least Squares” on page 3-11 
for a description of the robust fitting methods provided by the toolbox.

You can identify the Palm Beach County data in the scatter plot by using the 
data tips feature, and knowing the index number of the data point.

ind = find(strcmp(counties,'Palm Beach'))
ind =
    50

Mark the absentee 
votes to be excluded.
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The Fit Editor and the Fit Options GUI are shown below for a robust fit. 

The data, robust and regular least squares fits, and residuals for the buchanan 
vs. bush data set are shown below.

Associate the excluded 
absentee votes with the fit.

Open the Fit Options GUI.

Choose robust fitting 
with bisquare weights. 

The data tip shows that 
Buchanan received 3411 
votes in Palm Beach County. 

The Palm Beach County 
residual is very large.

The Miami/Dade County 
residual is also very large.
4
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The graphical results show that the linear model is reasonable for the majority 
of data points, and the residuals appear to be randomly scattered around zero. 
However, two residuals stand out. The largest residual corresponds to Palm 
Beach County. The other residual is at the largest predictor value, and 
corresponds to Miami/Dade County.

The numerical results are shown below. The inverse slope of the robust fit 
indicates that Buchanan should receive one vote for every 197.4 Bush votes.

The data, robust and regular least squares fits, and residuals for the buchanan 
vs. gore data set are shown below.

The Miami/Dade and 
Broward County residuals 
are also very large.

The Palm Beach County 
residual is very large.
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Again, the graphical results show that the linear model is reasonable for the 
majority of data points, and the residuals appear to be randomly scattered 
around zero. However, three residuals stand out. The largest residual 
corresponds to Palm Beach County. The other residuals are at the two largest 
predictor values, and correspond to Miami/Dade County and Broward County.

The numerical results are shown below. The inverse slope of the robust fit 
indicates that Buchanan should receive one vote for every 189.3 Gore votes.

Using the fitted slope value, you can determine the expected number of votes 
that Buchanan should have received for each fit. For the Buchanan versus 
Bush data, you evaluate the fit at a predictor value of 152,951. For the 
Buchanan versus Gore data, you evaluate the fit at a predictor value of 
269,732. These results are shown below for both data sets and both fits. 

The robust results for the Buchanan versus Bush data suggest that Buchanan 
received 3411 – 775 = 2636 excess votes, while robust results for the Buchanan 
versus Gore data suggest that Buchanan received 3411 – 1425 = 1986 excess 
votes.

Table 3-5:  Expected Buchanan Votes in Palm Beach County

Data Set Fit Expected Buchanan Votes

Buchanan vs. Bush Regular least squares 814

Robust least squares 775

Buchanan vs. Gore Regular least squares 1246

Robust least squares 1425
6



Parametric Fitting
The margin of victory for George Bush is given by

margin = sum(bush) sum(gore)
margin =

   537

Therefore, the voter intention comes into play because in both cases, the 
margin of victory is less than the excess Buchanan votes.

In conclusion, the analysis of the 2000 United States presidential election 
results for the state of Florida suggests that the Reform Party candidate 
received an excess number of votes in Palm Beach County, and that this excess 
number was a crucial factor in determining the election outcome. However, 
additional analysis is required before a final conclusion can be made.
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Nonparametric Fitting
In some cases, you are not concerned about extracting or interpreting fitted 
parameters. Instead, you might simply want to draw a smooth curve through 
your data. Fitting of this type is called nonparametric fitting. The Curve Fitting 
Toolbox supports these nonparametric fitting methods:

• Interpolants — Estimate values that lie between known data points.

• Smoothing spline — Create a smooth curve through the data. You adjust the 
level of smoothness by varying a parameter that changes the curve from a 
least squares straight-line approximation to a cubic spline interpolant.

For more information about interpolation, refer to “Polynomials and 
Interpolation” and the interp1 function in the MATLAB documentation. For 
more information about smoothing splines, refer to “Tutorial” and the csaps 
function in the Spline Toolbox documentation.

Interpolants
Interpolation is a process for estimating values that lie between known data 
points. The supported interpolant methods are shown below.

Table 3-6:  Interpolant Methods

Method Description

Linear Linear interpolation. This method fits a different 
linear polynomial between each pair of data points.

Nearest neighbor Nearest neighbor interpolation. This method sets the 
value of an interpolated point to the value of the 
nearest data point. Therefore, this method does not 
generate any new data points.

Cubic spline Cubic spline interpolation. This method fits a different 
cubic polynomial between each pair of data points.

Shape-preserving Piecewise cubic Hermite interpolation (PCHIP). This 
method preserves monotonicity and the shape of the 
data.
8
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The type of interpolant you should use depends on the characteristics of the 
data being fit, the required smoothness of the curve, speed considerations, 
postfit analysis requirements, and so on. The linear and nearest neighbor 
methods are fast, but the resulting curves are not very smooth. The cubic spline 
and shape-preserving methods are slower, but the resulting curves are often 
very smooth.

For example, the nuclear reaction data from the file carbon12alpha.mat is 
shown below with a nearest neighbor interpolant fit and a shape-preserving 
(PCHIP) interpolant fit. Clearly, the nearest neighbor interpolant does not 
follow the data as well as the shape-preserving interpolant. The difference 
between these two fits can be important if you are interpolating. However, if 
you want to integrate the data to get a sense of the total unormalized strength 
of the reaction, then both fits provide nearly identical answers for reasonable 
integration bin widths.
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Note  Goodness of fit statistics, prediction bounds, and weights are not 
defined for interpolants. Additionally, the fit residuals are always zero (within 
computer precision) because interpolants pass through the data points.

Interpolants are defined as piecewise polynomials because the fitted curve is 
constructed from many “pieces.” For cubic spline and PCHIP interpolation, 
each piece is described by four coefficients, which are calculated using a cubic 
(third-degree) polynomial. Refer to the spline function for more information 
about cubic spline interpolation. Refer to the pchip function for more 
information about shape-preserving interpolation, and for a comparison of the 
two methods.

Parametric polynomial fits result in a global fit where one set of fitted 
coefficients describes the entire data set. As a result, the fit can be erratic. 
Because piecewise polynomials always produce a smooth fit, they are more 
flexible than parametric polynomials and can be effectively used for a wider 
range of data sets.

Smoothing Spline
If your data is noisy, you might want to fit it using a smoothing spline. 
Alternatively, you can use one of the smoothing methods described in 
“Smoothing Data” on page 2-9.

The smoothing spline s is constructed for the specified smoothing parameter p 
and the specified weights wi. The smoothing spline minimizes

If the weights are not specified, they are assumed to be 1 for all data points.

p is defined between 0 and 1. p = 0 produces a least squares straight line fit to 
the data, while p = 1 produces a cubic spline interpolant. If you do not specify 
the smoothing parameter, it is automatically selected in the “interesting 
range.” The interesting range of p is often near 1/(1+h3/6) where h is the 
average spacing of the data points, and it is typically much smaller than the 
allowed range of the parameter. Because smoothing splines have an associated 
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Nonparametric Fitting
parameter, you can consider these fits to be parametric. However, smoothing 
splines are also piecewise polynomials like cubic spline or shape-preserving 
interpolants and are considered a nonparametric fit type in this guide.

Note  The smoothing spline algorithm used by the Curve Fitting Toolbox is 
based on the csaps function included with the Spline Toolbox. Refer to the 
csaps reference pages for detailed information about smoothing splines.

The nuclear reaction data from the file carbon12alpha.mat is shown below 
with three smoothing spline fits. The default smoothing parameter (p = 0.99) 
produces the smoothest curve. The cubic spline curve (p = 1) goes through all 
the data points, but is not quite as smooth. The third curve (p = 0.95) misses 
the data by wide margin and illustrates how small the “interesting range” of p 
can be. 
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Example: Nonparametric Fit
This example fits the following data using a cubic spline interpolant and 
several smoothing splines.

rand('state',0);
x = (4*pi)*[0 1 rand(1,25)]; 
y = sin(x) + .2*(rand(size(x))-.5);

As shown below, you can fit the data with a cubic spline by selecting 
Interpolant from the Type of fit list.

The results shown below indicate that goodness of fit statistics are not defined 
for interpolants.

As described in “Interpolants” on page 3-68, cubic spline interpolation is 
defined as a piecewise polynomial that results in a structure of coefficients. The 
number of “pieces” in the structure is one less than the number of fitted data 
points, and the number of coefficients for each piece is four because the 
polynomial degree is three. The toolbox does not allow you to access the 
structure of coefficients.
2



Nonparametric Fitting
As shown below, you can fit the data with a smoothing spline by selecting 
Smoothing Spline in the Type of fit list.

The level of smoothness is given by the Smoothing Parameter. The default 
smoothing parameter value depends on the data set, and is automatically 
calculated by the toolbox after you click the Apply button.

For this data set, the default smoothing parameter is close to 1, indicating that 
the smoothing spline is nearly cubic and comes very close to passing through 
each data point. Create a fit for the default smoothing parameter and name it 
Smooth1. If you do not like the level of smoothing produced by the default 
smoothing parameter, you can specify any value between 0 and 1. A value of 0 
produces a piecewise linear polynomial fit, while a value of 1 produces a 
piecewise cubic polynomial fit, which passes through all the data points. For 
comparison purposes, create another smoothing spline fit using a smoothing 
parameter of 0.5 and name the fit Smooth2.

The numerical results for the smoothing spline fit Smooth1 are shown below.

The default smoothing 
parameter is based on 
the data set you fit.
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The data and fits are shown below. The default abscissa scale was increased to 
show the fit behavior beyond the data limits. You change the axes limits with 
Tools->Axes Limit Control menu item.

Note that the default smoothing parameter produces the smoothest curve. As 
the smoothing parameter increases beyond the default value, the associated 
curve approaches the cubic spline curve.

The cubic spline and default 
smoothing spline results 
diverge at the end points.

The cubic spline and default 
smoothing spline results are 
similar for interior points.

The default smoothing 
parameter produces the 
smoothest result.
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Function Reference

This chapter describes the toolbox M-file functions that you use directly. A number of other M-file 
helper functions are provided with this toolbox to support the functions listed below. These helper 
functions are not documented because they are not intended for direct use.

Functions — Categorical 
List (p. 4-2)

Contains a series of tables that group functions by category

Functions — Alphabetical 
List (p. 4-4)

Lists all the functions alphabetically
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Functions — Categorical List

Fitting Data

Getting Information and Help

Getting and Setting Properties

Preprocessing Data

cfit Create a cfit object

fit Fit data using a library or custom model, a smoothing spline, 
or an interpolant

fitoptions Create or modify a fit options object

fittype Create a fit type object

cflibhelp Display information about library models, splines, and 
interpolants

disp Display descriptive information for Curve Fitting Toolbox 
objects

get Return properties for a fit options object

set Configure or display property values for a fit options object

excludedata Specify data to be excluded from a fit

smooth Smooth the response data



Functions — Categorical List
Postprocessing Data

General Purpose

confint Compute confidence bounds for fitted coefficients

differentiate Differentiate a fit result object

integrate Integrate a fit result object

predint Compute prediction bounds for new observations or for the 
function

cftool Open the Curve Fitting Tool

datastats Return descriptive statistics about the data

feval Evaluate a fit result object or a fit type object

plot Plot data, fit, prediction bounds, outliers, and residuals
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This section contains function reference pages listed alphabetically.



cfit
4cfitPurpose Create a cfit object

Syntax fmodel = cfit(ftype,coef1,coef2,...)

Arguments

Description fmodel = cfit(ftype,coef1,coef2,...) creates the cfit object fmodel based 
on the custom or library model specified by ftype, and with the coefficients 
specified by coef1, coef2, and so on. You create ftype with the fittype 
function.

Remarks cfit is called by the fit function. You should call cfit directly if you want to 
assign coefficients and problem parameters to a model without performing a 
fit.

Example Create a fit type object and assign values to the coefficients and to the problem 
parameter.

m = fittype('a*x^2+b*exp(n*x)','prob','n');
f = cfit(m,pi,10.3,3);

See Also fit, fittype

ftype A fit type object representing a custom or library model.

coef1,coef2,... The model coefficients.

fmodel The cfit object.
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cflibhelp
4cflibhelpPurpose Display information about library models, splines, and interpolants

Syntax cflibhelp
cflibhelp group

Arguments

Description cflibhelp displays the names, equations, and descriptions for all the fit types 
in the curve fitting library. You can use the fit type name as an input parameter 
to the fit, cfit, and fittype functions.

cflibhelp group displays the names, equations, and descriptions for the fit 
type group specified by group. The supported fit type groups are given below.

For more information about the toolbox library models, refer to “Library 
Models” on page 3-16. For more information about the toolbox library 
interpolants and splines, refer to “Nonparametric Fitting” on page 3-68.

group The name of the fit type group.

Group Description

distribution Distribution models such as Weibull

exponential One-term and two-term exponential equations

fourier Sums of sine and cosine equations up to eight terms

gaussian Sums of Gaussian equations up to eight terms

interpolant Interpolant fit types including linear, nearest neighbor, 
cubic spline, and shape-preserving interpolation

polynomial Polynomial equations up to ninth degree

power One-term and two-term power equations

rational Ratios of polynomial equations up to degree 5 in both 
numerator and denominator

sin Sums of sine equations up to eight terms

spline Cubic spline and smoothing spline fit types
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Example Display the names and descriptions for the spline fit type group.

cflibhelp spline

SPLINES

        SPLINETYPE             DESCRIPTION

        cubicspline            cubic interpolating spline
        smoothingspline        smoothing spline

Display the model names and equations for the polynomial fit type group.

cflibhelp polynomial

  POLYNOMIAL MODELS

        MODELNAME             EQUATION

          poly1                Y = p1*x+p2
          poly2                Y = p1*x^2+p2*x+p3
          poly3                Y = p1*x^3+p2*x^2+...+p4
          ...
          poly9                Y = p1*x^9+p2*x^8+...+p10

See Also cfit, fit, fittype
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4cftoolPurpose Open the Curve Fitting Tool

Syntax cftool
cftool(xdata,ydata)

Arguments

Description cftool opens the Curve Fitting Tool.

cftool(xdata,ydata) opens the Curve Fitting Tool with predictor data 
specified by xdata and response data specified by ydata. xdata and ydata must 
be vectors of the same size. Infs and NaNs are ignored because you cannot fit 
data containing these values. Additionally, only the real component of a 
complex value is used.

Remarks The Curve Fitting Tool is a graphical user interface (GUI) that allows you to

• Visually explore data and fits as scatter plots

• Graphically evaluate the goodness of fit using residuals and prediction 
bounds

• Access GUIs for importing, preprocessing, and fitting data, and for plotting 
and analyzing fits to the data

xdata A vector of predictor data.

ydata A vector of response data.
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The Curve Fitting Tool is shown below. The data is from the census MAT-file, 
and the fit is a quadratic polynomial. The residuals are shown as a line plot 
below the data and fit.

The Curve Fitting Tool provides several features that facilitate data and fit 
exploration. Refer to “Viewing Data” on page 2-6 for a description of these 
features.

By clicking the Data, Fitting, Exclude, Plotting, or Analysis buttons, you can 
open the associated GUIs, which are described below. For a complete example 
that uses many of these GUIs, refer to Chapter 1, “Getting Started with the 
Curve Fitting Toolbox.”
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The Data GUI
The Data GUI allows you to

• Import, preview, name, and delete data sets

• Smooth noisy data

The Data GUI is shown below with the census data loaded.

Refer to Chapter 2, “Importing, Viewing, and Preprocessing Data” for more 
information about the Data GUI.
4-10



cftool
The Fitting GUI
The Fitting GUI allows you to

• Fit data using a parametric or nonparametric equation

• Examine and compare fit results including fitted coefficient values and 
goodness of fit statistics

• Keep track of all the data sets and fits for the current session

The Fitting GUI shown below displays the results of fitting the census data to 
a quadratic polynomial.
4-11



cftool
The Exclude GUI
The Exclude GUI allows you to create exclusion rules for a data set. An 
exclusion rule identifies data to be excluded while fitting. The excluded data 
can be individual data points, or a section of predictor or response data. The 
Exclude GUI shown below indicates that the first two data points of the census 
data are marked for exclusion, and that this exclusion rule is named exc1.

The Plotting GUI
The Plotting GUI allows you to control the data sets and fits displayed by the 
Curve Fitting Tool. The Plotting GUI shown below indicates that the census 
data and the fit poly2 are displayed by the Curve Fitting Tool.
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The Analysis GUI
The Analysis GUI allows you to

• Evaluate (interpolate or extrapolate), differentiate, or integrate a fit

• Plot the analysis results and the data set

The Analysis GUI shown below displays the numerical results of extrapolating 
the census data from the year 2000 to the year 2050 in 10-year increments. 

Refer to “Analyzing the Fit” on page 1-17 for an example that uses the Analysis 
GUI.
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confint
4confintPurpose Compute confidence bounds for fitted coefficients

Syntax ci = confint(fresult)
ci = confint(fresult,level)

Arguments

Description ci = confint(fresult) returns 95% confidence bounds to ci for the fit 
coefficients associated with fresult. fresult is the fit result object returned 
by the fit function. ci is a 2-by-n array where n is the number of coefficients 
associated with fresult. The top row of the array contains the lower bound, 
while the bottom row of the array contains the upper bound for each coefficient

ci = confint(fresult,level) returns confidence bounds for the confidence 
level specified by level. You specify level on the interval (0,1). For example, 
if level is 0.99, then 99% confidence bounds are calculated.

Remarks To calculate confidence bounds, confint uses R-1 (the inverse R factor from QR 
decomposition of the Jacobian), the degrees of freedom for error, and the root 
mean squared error. This information is automatically returned by the fit 
function and contained within the fit result object.

If coefficients are bounded and one or more of the estimates are at their bounds, 
those estimates are regarded as fixed and do not have confidence bounds. Note 
that you cannot calculate confidence bounds for the smoothing spline and 
interpolant fit types.

fresult A fit result object.

level The confidence level.

ci An array of confidence bounds.
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Example Fit the census data to a second-degree polynomial. The display for fresult 
includes the 95% confidence bounds for the fitted coefficients.

load census
fresult = fit(cdate,pop,'poly2')

fresult =
     Linear model Poly2:
       fresult(x) = p1*x^2 + p2*x + p3
     Coefficients (with 95% confidence bounds):
       p1 =    0.006541  (0.006124, 0.006958)
       p2 =      -23.51  (-25.09, -21.93)
       p3 =  2.113e+004  (1.964e+004, 2.262e+004)

Calculate 95% confidence bounds for the fitted coefficients using confint.

ci = confint(fresult,0.95)
ci =

0.0061242      -25.086        19641
    0.0069581      -21.934        22618

Note that the fit display and the array returned by confint present the 
confidence bounds using slightly different formats. The fit display mimics an 
n-by-3 array where n is the number of coefficients, the first column is the 
coefficient variable, the second column is the fitted coefficient value, and the 
third column is the lower and upper bound. confint returns a 2-by-n array 
where the top row contains the lower bound and the bottom row contains the 
upper bound for each coefficient.

See Also fit
4-15



datastats
4datastatsPurpose Return descriptive statistics about the data

Syntax xds = datastats(xdata)
[xds,yds] = datastats(xdata,ydata)

Arguments

Description xds = datastats(xdata) returns statistics for xdata to the structure xds. The 
structure contains the fields shown below.

[xds,yds] = datastats(xdata,ydata) returns statistics for xdata and ydata 
to the structures xds and yds, respectively. xds and yds contain the fields 
shown above. xdata and ydata are column vectors of the same size.

Remarks If xdata or ydata contains complex values, only the real part of the value is 
used in the statistics computations. If the data contains Infs or NaNs, they are 
processed using the usual MATLAB rules.

xdata A column vector of predictor data.

ydata A column vector of response data.

xds A structure containing descriptive statistics for xdata.

yds A structure containing descriptive statistics for ydata.

Field Description

num The number of data values

max The maximum data value

min The minimum data value

mean The mean value of the data

median The median value of the data

range The range of the data

std The standard deviation of the data
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Example Return data statistics for the census data.

load census
[xds,yds] = datastats(cdate,pop)

xds = 

       num: 21
       max: 1990
       min: 1790
      mean: 1890
    median: 1890
     range: 200
       std: 62.048

yds = 

       num: 21
       max: 248.7
       min: 3.9
      mean: 85.729
    median: 62.9
     range: 244.8
       std: 78.601
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differentiate
4differentiatePurpose Differentiate a fit result object

Syntax deriv1 = differentiate(fitresult,x)
[deriv1,deriv2] = differentiate(...)

Arguments

Description deriv1 = differentiate(fitresult,x) differentiates the fit result object 
fresult at the points specified by x and returns the result to deriv1. You can 
generate fresult with the fit function or the cfit function.

[deriv1,deriv2] = differentiate(...) computes the first derivative 
deriv1, and the second derivative deriv2 for the specified fit result object.

Remarks For library equations with closed forms, analytic derivatives are calculated. 
For all other equations, the first derivative is calculated using the central 
difference quotient

where x is the predictor value at which the derivative is calculated, h is a small 
number, yx+h is fresult evaluated at x+h, and yx-h is fresult evaluated at x-h. 
The second derivative is calculated using the expression

fresult A fit result object.

x A column vector of values at which fresult is differentiated.

deriv1 A column vector of first derivatives.

deriv2 A column vector of second derivatives.
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Example Create a noisy sine wave on the interval [0, 4π].

rand('state',0);
x = linspace(0,4*pi,200)';
y = sin(x) + (rand(size(x))-0.5)*0.2;

Create a custom fit type, and fit the data using reasonable starting values.

ftype = fittype('a*sin(b*x)');
fopts = fitoptions('Method','Nonlinear','start',[1 1]);
fit1 = fit(x,y,ftype,fopts);

Calculate the first derivative for each value of x.

deriv1 = differentiate(fit1,x);

Plot the data, the fit to the data, and the first derivatives.

plot(fit1,'k-',x,y,'b.');hold on
plot(x,deriv1,'ro')
legend('data','fitted curve','derivatives')

See Also cfit, fit, integrate
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4dispPurpose Display descriptive information for Curve Fitting Toolbox objects

Syntax obj
disp(obj)

Arguments

Description obj or disp(obj) displays descriptive information for obj. You can create obj 
with the fit or cfit function, the fitoptions function, or the fittype 
function.

Example The display for a custom fit type object is shown below.

ftype = fittype('a*x^2+b*x+c+d*exp(-e*x)')

ftype =
     General model:
       ftype(a,b,c,d,e,x) = a*x^2+b*x+c+d*exp(-e*x)

The display for a fit options object is shown below.

fopts = fitoptions('Method','Nonlinear','Normalize','on')

fopts =
        Normalize: 'on'
          Exclude: []
          Weights: []
           Method: 'NonlinearLeastSquares'
           Robust: 'Off'
       StartPoint: []
            Lower: []
            Upper: []
        Algorithm: 'Trust-Region'
    DiffMinChange: 1e-008
    DiffMaxChange: 0.1
          Display: 'Notify'
      MaxFunEvals: 600
          MaxIter: 400
           TolFun: 1e-006
             TolX: 1e-006

obj A Curve Fitting Toolbox object.
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Note that all fit types have the Normalize, Exclude, Weights, and Method fit 
options. Additional fit options are available depending on the Method value. For 
example, if Method is SmoothingSpline, the SmoothingParam fit option is 
available. 

The display for a fit result object is shown below. 

fresult = fit(cdate,pop,ftype,fopts)

Warning: Start point not provided, choosing random start point.
Maximum number of function evaluations exceeded. Increasing
MaxFunEvals (in fit options) may allow for a better fit, or 
the current equation may not be a good model for the data.

fresult =

     General model:
       fresult(x) = a*x^2+b*x+c+d*exp(-e*x)
       where x is normalized by mean 1890 and std 62.05
     Coefficients (with 95% confidence bounds):
       a =       21.14  (-27.61, 69.89)
       b =       64.49  (-188.5, 317.4)
       c =       49.92  (-421.5, 521.4)
       d =       11.96  (-458, 481.9)
       e =     -0.7745  (-10.25, 8.701)

See Also cfit, fit, fitoptions, fittype
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4excludedataPurpose Specify data to be excluded from a fit

Syntax outliers = excludedata(xdata,ydata,'MethodName',MethodValue)

Arguments

Description outliers = excludedata(xdata,ydata,'MethodName',MethodValue)
identifies data to be excluded from a fit using the specified MethodName and 
MethodValue. outliers is a logical vector containing 1’s marking data points 
to exclude while fitting, and 0’s marking data points to include while fitting. 
The data exclusion methods are given below.

xdata A column vector of predictor data.

ydata A column vector of response data.

'MethodName' The data exclusion method.

MethodValue The value associated with MethodName.

outliers A logical vector that defines data to be excluded from a fit.

Method Description

box A four-element vector that specifies a box of data to include in a 
fit. Data outside the box is excluded. You specify the box as 
[xmin xmax ymin ymax].

domain A two-element vector that specifies the domain of data to 
include in a fit. Data outside this domain is excluded. You 
specify the domain as [xmin xmax].

indices A vector specifying the indices of the data points to be excluded.

range A two-element vector that specifies the range of data to include 
in a fit. Data outside this range is excluded. You specify the 
range as [ymin ymax].
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Remarks You can combine data exclusion methods using logical operators. For example, 
to combine methods using the | (OR) operator

outliers = excludedata(xdata,ydata,'indices',[3 5]);
outliers = outliers|excludedata(xdata,ydata,'box',[1 10 0 90]);

In some cases, you might want to use the ~ (NOT) operator to specify a box that 
contains all the data to exclude.

outliers = ~excludedata(xdata,ydata,'box',[1 10 0 90]);

Example Generate random data in the interval [0, 15], create a sine wave with noise, and 
add two outliers with the value 2.

rand('state',0);
x = 15*rand(150,1); 
y = sin(x) + (rand(size(x))-0.5)*0.5;
y(ceil(length(x)*rand(2,1))) = 2;

Identify outliers that are outside the interval [-1.5, 1.5] using the range 
method.

outliers = excludedata(x,y,'range',[-1.5 1.5]);

Identify the same outliers using the indices method.

ind = find((y>1.5)|(y<-1.5));
outliers = excludedata(x,y,'indices',ind);

You can pass outliers to the fit function to exclude the specified data points 
from a fit.

ftype = fittype('a*sin(b*x)');
fresult = fit(x,y,ftype,'startpoint',[1 1],'exclude',outliers);

See Also fit
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4fevalPurpose Evaluate a fit result object or a fit type object

Syntax f = feval(fresult,x)
f = feval(ftype,coef1,coef2,...,x)

Arguments

Description f = feval(fresult,x) evaluates the fit result object fresult at the values 
specified by x, and returns the result to f. You create a fit result object with the 
fit function.

f = feval(ftype,coef1,coef2,...,x) evaluates the fit type object ftype 
using the coefficients specified by coef1, coef2, and so on. You create a fit type 
object with the fittype function.

Remarks You can also evaluate a fit result or a fit type object using the following syntax.

f = fresult(x);
f = ftype(coef1,coef2,...,x);

Example Create a fit type object and evaluate the object at x using the specified model 
coefficients.

x = (0:0.1:10)';
ftype = fittype('a*x^2+b*x');
f = feval(ftype,1,2,x);

fresult A fit result object.

x A column vector of values at which fresult or ftype is 
evaluated.

ftype A fit type object.

coef1,coef2,... The model coefficients assigned to ftype.

f A column vector containing the result of evaluating 
fresult or ftype at x.
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Create a fit result object and evaluate the object over a finer range in x.

y = x.^2+(rand(size(x))-0.5);
xx = (0:0.05:10)';
fresult = fit(x,y,ftype);
f = feval(fresult,xx);

See Also fit, fittype
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4fitPurpose Fit data using a library or custom model, a smoothing spline, or an interpolant

Syntax fresult = fit(xdata,ydata,'ltype')
fresult = fit(xdata,ydata,'ltype','PropertyName',PropertyValue, )
fresult = fit(xdata,ydata,'ltype',opts)
fresult = fit(xdata,ydata,'ltype',...,'problem',values)
fresult = fit(xdata,ydata,ftype,...)
[fresult,gof] = fit( )
[fresult,gof,output] = fit( )

Arguments

Description fresult = fit(xdata,ydata,'ltype') fits the data specified by xdata and 
ydata to the library model, interpolant, or smoothing spline specified by ltype. 
The fit result is returned to fresult. You can display the library fit type names 
with the cflibhelp function. xdata and ydata cannot contain Infs or NaNs. 
Additionally, only the real part of a complex value is used.

xdata A column vector of predictor data.

ydata A column vector of response data.

'ltype' The name of a library model, spline, or interpolant.

'PropertyName' The name of a fit options property.

PropertyValue A valid value for PropertyName.

opts A fit options object.

'problem' Specify problem parameters.

values A cell array of problem parameter values.

ftype A fit type object.

fresult The fit result object.

gof Goodness of fit statistics.

output A structure containing information that is associated with 
the fitting procedure.
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fresult = fit(xdata,ydata,'ltype','PropertyName', 
PropertyValue,...) fits the data using the options specified by PropertyName 
and PropertyValue. You can display the fit options available for the specified 
library fit type with the fitoptions function.

fresult = fit(xdata,ydata,'ltype',opts) fits the data using options 
specified by the fit options object opts. You create a fit options object with the 
fitoptions function. This is an alternative syntax to specifying property 
name/property value pairs.

fresult = fit(xdata,ydata,'ltype',...,'problem',values) assigns 
values to problem parameters. values is a cell array with one element per 
parameter. Problem parameters are problem-dependent constants that you 
define as part of your model. See fittype for more information on problem 
parameters.

fresult = fit(xdata,ydata,ftype,...) fits the data to the fit type object 
specified by ftype. You create a fit type object with the fittype function.

[fresult,gof] = fit(...) returns goodness of fit statistics to the structure 
gof. The gof structure includes the fields shown below.

[fresult,gof,output] = fit(...) returns the structure output, which 
contains information that is associated with the fitting procedure used. 
Supported fitting procedures include linear least squares, robust nonlinear 
least squares, and so on. Some information applies to all fitting procedures, 
while other information is relevant only for particular fitting procedures. For 

Field Description

sse Sum of squares due to error

rsquare Coefficient of determination

dfe Degrees of freedom

adjrsquare Degree-of-freedom adjusted coefficient of determination

rmse Root mean squared error (standard error)
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example, the information returned for nonlinear least squares fits is given 
below. 

Remarks For rationals and Weibull library models, the coefficient starting values are 
randomly selected in the range [0,1]. Therefore, if you perform multiple fits to 
a data set using the same equation, you might get different coefficient results 
due to different starting values. To avoid this situation, you should pass in a 
vector of starting values each time you fit, or define a specific state for the 
random number generator, rand or randn, before fitting.

For all other library models, optimal starting points are automatically 
calculated. These values depend on the data, and are based on model-specific 
heuristics.

Field Description

numobs Number of observations (response values).

numparam Number of unknown parameters to fit.

residuals Vector of residuals.

Jacobian Jacobian matrix.

exitflag Describes the exit condition. If exitflag > 0, the 
function converged to a solution. If exitflag = 0, the 
maximum number of function evaluations or iterations 
was exceeded. If exitflag < 0, the function did not 
converge to a solution.

iterations Number of iterations used to complete the fit.

funcCount Number of function evaluations used to complete the fit.

firstorderopt Measure of first-order optimality.

algorithm Fitting algorithm used.
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Example Fit the census data with a second-degree polynomial library model and return 
the goodness of fit statistics and the output structure.

load census
[fit1,gof1,out1] = fit(cdate,pop,'poly2');

Normalize the data and fit with a third-degree polynomial.

[fit1,gof1,out1] = fit(cdate,pop,'poly3','Normalize','on');

Fit the data with a single-term exponential library model.

[fit2,gof2,out2] = fit(cdate,pop,'exp1','Normalize','on');

Create a fit options object, and try to find a better fit by overriding the default 
starting points for the fit coefficients.

opts = fitoptions('exp1','Norm','on','start',[100 0.1]);
[fit3,gof3,out3] = fit(cdate,pop,'exp1',opts);

Fit the data to a custom model that contains the problem parameter n.

mymodel = fittype('a*exp(b*n*x)+c','problem','n');
opts = fitoptions(mymodel);
set(opts,'normalize','on')
[fit4,gof4,out4] = fit(cdate,pop,mymodel,opts,'problem',{2});

Warning: Start point not provided, choosing random start point.

The warning occurs whenever you fit data with a custom nonlinear model and 
do not provide starting points.

See Also cflibhelp, fitoptions, fittype
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4fitoptionsPurpose Create or modify a fit options object

Syntax opts = fitoptions
opts = fitoptions('ltype')
opts = fitoptions('ltype','PropertyName',PropertyValue,...)
opts = fitoptions('method',value)
opts = fitoptions('method',value,'PropertyName',PropertyValue,...)
opts = fitoptions(opts,'PropertyName',PropertyValue,...)
opts = fitoptions(opts,newopts)

Arguments

Description opts = fitoptions creates the empty fit options object opts. The returned 
options are supported by all fitting methods, and are given by the following 
properties. Note that curly braces denote default property values.

'ltype' The name of a library model, spline, or interpolant.

'PropertyName' The name of a fit options property.

PropertyValue A valid value for PropertyName.

'method' Specify a toolbox fitting method.

value A supported fitting method.

opts,newopts A fit options object.

Property Description

Normalize Specifies whether the data is centered and scaled. The 
value can be {'off'} or 'on'.

Exclude A vector of one or more data points to exclude from the fit. 
You can use the excludedata function to create this vector.

Weights A vector of weights associated with the response data.

Method The fitting method. The value is None for an empty object. A 
complete list of supported fitting methods is given below.
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opts = fitoptions('ltype') creates a default fit options object for the 
library or custom fit type specified by ltype. You can display the library model, 
interpolant, and smoothing spline names with the cflibhelp function.

opts = fitoptions('ltype','PropertyName',PropertyValue,...) creates 
a fit options object for the specified library fit type, and with the specified 
property names and property values. Note that you can specify PropertyName 
or PropertyValue without regard to case, and you can make use of name 
completion by supplying the minimum number of characters that uniquely 
identify the string.

opts = fitoptions('method',value) creates a default fit options object for 
the fitting method specified by value. A complete list of supported fitting 
methods is given below.

opts = fitoptions('method',value,'PropertyName',PropertyValue,...)
creates a default fit options object for the specified fitting method, and with the 
specified property names and property values.

opts = fitoptions(opts,'PropertyName',PropertyValue,...) modifies 
the existing fit options object with the specified property names and property 
values.

opts = fitoptions(opts,newopts) combines the existing fit options object 
opts with a new fit options object newopts. If both objects have the same 
Method value, the nonempty properties in newopts override the corresponding 
properties in opts. If the objects have different Method values, the output object 
will have the same Method as opts, and only the Normalize, Exclude, and 
Weights properties of newopts will override the corresponding properties in 
opts.

Remarks To display the possible fit options property values, use the set function.

set(opts)

To display the current fit options property values, use the get function.

get(opts)

Note that you can configure or display a single property value using the dot 
notation. See below for an example.
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Additional Fit Options
If Method is NearestInterpolant, LinearInterpolant, PchipInterpolant, or 
CubicSplineInterpolant, there are no additional fit options. 

If Method is SmoothingSpline, the SmoothingParam property is available to 
configure the smoothing parameter. You can specify any value between 0 and 
1. The default value depends on the data set.

If Method is LinearLeastSquares, the additional fit option properties shown 
below are available.

Property Description

Robust Specifies whether to use the robust linear least squares 
fitting method. The value can be {'off'} or 'on'.

Lower A vector of lower bounds on the coefficients to be fitted. The 
coefficients are specified by the input argument ftype for 
fit. The default value of Lower is an empty vector 
indicating that the fit is not constrained by lower bounds. If 
bounds are specified, the vector length must equal the 
number of coefficients. An unconstrained lower bound is 
specified by -Inf.

Upper A vector of upper bounds on the coefficients to be fitted. The 
coefficients are specified by the input argument ftype for 
fit. The default value of Upper is an empty vector 
indicating that the fit is not constrained by upper bounds. If 
bounds are specified, the vector length must equal the 
number of coefficients. An unconstrained upper bound is 
specified by Inf.
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If Method is NonlinearLeastSquares, the additional fit option properties 
shown below are available.

Property Description

Robust Specifies whether to use the robust nonlinear least 
squares fitting method. The value can be {'off'} or 'on'.

Lower A vector of lower bounds on the coefficients to be fitted. 
The coefficients are specified by the input argument ftype 
for fit. The default value of Lower is an empty vector 
indicating that the fit is not constrained by lower bounds. 
If bounds are specified, the vector length must equal the 
number of coefficients. An unconstrained lower bound is 
specified by -Inf.

Upper A vector of upper bounds on the coefficients to be fitted. 
The coefficients are specified by the input argument ftype 
for fit. The default value of Upper is an empty vector 
indicating that the fit is not constrained by upper bounds. 
If bounds are specified, the vector length must equal the 
number of coefficients. An unconstrained upper bound is 
specified by Inf.

StartPoint Vector of coefficient starting values. The coefficients are 
specified by the input argument ftype for fit. The default 
value of StartPoint is an empty vector. If the default 
value is passed to the fit function, then starting points for 
some library models are determined heuristically. For 
other models, the values are selected randomly on the 
interval (0,1).

Algorithm Algorithm used for the fitting procedure. The value can be 
'Levenberg-Marquardt','Gauss-Newton', or 
{'Trust-Region'}.

DiffMax
Change

Maximum change in coefficients for finite difference 
gradients. The default value is 0.1.
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Note  For the properties Upper, Lower, and StartPoint, the order of the 
entries in the vector corresponds to the alphabetical order of the coefficients, 
not the order in which they appear in the expression ftype. For example, if 
you create ftype by the command ftype = fittype('b*x^2+c*x+a'), setting 
StartPoint to [1 3 5] assigns a = 1, b = 3, and c = 5.

Example Create an empty fit options object and configure the object so that data is 
normalized before fitting.

opts = fitoptions;
opts.Normal = 'on'

opts =
 
    Normalize: 'on'
      Exclude: []

DiffMin
Change

Minimum change in coefficients for finite difference 
gradients. The default value is 10-8.

Display Level of display. {'notify'} displays output only if the fit 
does not converge. 'final' displays only the final output. 
'iter' displays output at each iteration. 'off' displays no 
output.

MaxFunEvals Maximum number of function (model) evaluations 
allowed. The default value is 600.

MaxIter Maximum number of fit iterations allowed. The default 
value is 400.

TolFun Termination tolerance on the function (model) value. The 
default value is 10-6.

TolX Termination tolerance on coefficients. The default value is 
10-6.

Property Description (Continued)
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      Weights: []
       Method: 'None'

Creating an empty fit options object is particularly useful when you want to 
configure only the Normalize, Exclude, or Weights properties for a data set, 
and then fit the data using the same fit options object, but with different fitting 
methods. For example, fit the census data using a third-degree polynomial, a 
one-term exponential, and a cubic spline.

load census
f1 = fit(cdate,pop,'poly3',opts);
f2 = fit(cdate,pop,'exp1',opts);
f3 = fit(cdate,pop,'cubicsp',opts);
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You can return values for some fit options with the fit function. For example, 
fit the census data using a smoothing spline and return the default smoothing 
parameter. Note that this value is based on the data passed to fit.

[f,gof,out] = fit(cdate,pop,'smooth');
smoothparam = out.p
smoothparam =

    0.0089

Increase the default smoothing parameter by about 10% and fit again.

opts = fitoptions('Method','Smooth','SmoothingParam',0.0098);
[f,gof,out] = fit(cdate,pop,'smooth',opts);

Create two noisy Gaussian peaks — one with a small width, and one with a 
large width.

a1 = 15; b1 = 3; c1 = 0.02;
a2 = 35; b2 = 7.5; c2 = 4;
x = (1:0.01:10)';
rand('state',0)
gdata = a1*exp(-((x-b1)/c1).^2) + a2*exp(-((x-b2)/c2).^2) ...
    + 5*(rand(size(x))-.5);

Fit the data using the two-term Gaussian library model.

ftype = fittype('gauss2');
gfit = fit(x,gdata,ftype);

Maximum number of function evaluations exceeded. Increasing
MaxFunEvals (in fit options) may allow for a better fit, or 
the current equation may not be a good model for the data.

Because the Display property is set to its default value Notify, a message is 
included as part of the display due to the fit not converging. The message 
indicates that you should try increasing the number of function evaluations.
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The fit results are shown below.

gfit
gfit =
     General model Gauss2:
       gfit(x) =  a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)
     Coefficients (with 95% confidence bounds):
       a1 =       43.59  (-411.9, 499.1)
       b1 =       7.803  (0.7442, 14.86)
       c1 =       4.371  (-3.065, 11.81)
       a2 =      -10.86  (-373.4, 351.7)
       b2 =       11.05  (-190.4, 212.5)
       c2 =       6.985  (-124.6, 138.5)

As you can see by examining the fitted coefficients, it is clear that the algorithm 
has difficulty fitting the narrow peak, and does a good job fitting the broad 
peak. In particular, note that the fitted value of the a2 coefficient is negative. 
To help the fitting procedure converge, specify that the lower bounds of the 
amplitude and width parameters for both peaks must be greater than zero. To 
do this, create a fit options object for the gauss2 model and configure the Lower 
property to zero for a1, c1, a2, and c2, but leave b1 and b2 unconstrained.

opts = fitoptions('gauss2');
opts.Lower = [0 -Inf 0 0 -Inf 0]; 

Fit the data using the new constraints.

gfit = fit(x,gdata,ftype,opts)
gfit =
     General model Gauss2:
       gfit(x) =  a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)
     Coefficients (with 95% confidence bounds):
       a1 =          35  (34.82, 35.17)
       b1 =        7.48  (7.455, 7.504)
       c1 =       3.993  (3.955, 4.03)
       a2 =       4.824  (2.964, 6.684)
       b2 =           3  (2.99, 3.01)
       c2 =     0.03209  (0.01774, 0.04643)

This is a much better fit, although you can still improve the a2 value.

See Also cflibhelp, fit, get, set
4-37



fittype
4fittypePurpose Create a fit type object

Syntax ftype = fittype('ltype')
ftype = fittype('expr')
ftype = fittype('expr','PropertyName',PropertyValue,...)

Arguments

Description ftype = fittype('ltype') creates the fit type object ftype from the library 
model, spline, or interpolant specified by ltype. You can display the library fit 
type names with the cflibhelp function.

ftype = fittype('expr') creates the fit type object from the expression 
specified by expr. The expression expr represents the custom model you will 
use to fit your data. To create a general (nonlinear) custom model, specify the 
entire equation as one expression. To create a linear custom model, pass in a 
cell array of expressions to expr but do not include the coefficients. Each 
element of the cell array corresponds to one term of the model. If there is a 
constant term, use “1” as the corresponding element in the cell array.

By default, the independent variable is assumed to be x, the dependent 
variable is assumed to be y, there are no problem-dependent variables, and all 
other variables are assumed to be coefficients of the model. All coefficients 
must be scalars.

'ltype' The name of a library model, spline, or interpolant.

'expr' An expression representing a custom model.

'PropertyName' The name of a fit type object property.

PropertyValue A valid value for PropertyName.

ftype A fit type object.
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ftype = fittype('expr','PropertyName',PropertyValue,...) creates a fit 
type object using the specified property name/property value pairs. The 
supported property names are given below.

Example Create a fit type object for a custom general equation and define the 
problem-dependent name to be n.

ftype = fittype('a*x+b*exp(n*x)','problem','n');

Define the independent variable to be chan.

ftype = fittype('a*chan+b*exp(n*chan)','ind','chan','prob','n')

ftype =
     General model:
       ftype(a,b,n,chan) = a*chan+b*exp(n*chan)

Create a fit type object for a custom linear equation and specify names for the 
coefficients.

ftype = fittype({'cos(x)','1'},'coeff',{'a1','a2'})

ftype =
     Linear model:
       ftype(a1,a2,x) = a1*cos(x) + a2

Property Name Description

coefficients Specify the coefficient names. Use a cell array if there 
are multiple names.

dependent Specify the dependent (response) variable name.

independent Specify the independent (predictor) variable name.

options Specify the default fit options for the current expression.

problem Specify the problem-dependent (constant) names. Use a 
cell array if there are multiple names. 
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Create a fit type object for the rat33 library model. Note that the display 
includes the full equation.

ftype = fittype('rat33')

ftype =
General model Rat33:
ftype(p1,p2,p3,p4,q1,q2,q3,x) = (p1*x^3 + p2*x^2 + p3*x + p4)/

                (x^3 + q1*x^2 + q2*x + q3)

Create a fit type object and include the existing fit options object opts, and fit 
to the census data.

load census
opts = fitoptions('Method','Nonlinear','Normalize','On');
ftype = fittype('a*exp(b*x)+c','options',opts);
f1 = fit(cdate,pop,ftype);
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4getPurpose Return properties for a fit options object

Syntax get(opts)
a = get(opts)
a = get(opts,'PropertyName')

Arguments

Description get(opts) returns all property names and their current values to the 
command line for the fit options object opts.

a = get(opts) returns the structure a where each field name is the name of a 
property of opts, and each field contains the value of that property.

a = get(opts,'PropertyName') returns the value of the property specified by 
PropertyName for opts. If PropertyName is replaced by a cell array of strings 
containing property names, get returns a cell array of values to a.

Example Create a fit options object for a second-degree polynomial, and return the 
current property values to the command line.

opts = fitoptions('poly2');
get(opts)

ans = 
    Normalize: 'off'
      Exclude: []
      Weights: []
       Method: 'LinearLeastSquares'
       Robust: 'Off'
        Lower: []
        Upper: []

See Also set

opts A fit options object.

'PropertyName' The name of a fit options property, or a cell array of 
property names.

a A structure or cell array of fit options property values.
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4integratePurpose Integrate a fit result object

Syntax inty = integrate(fresult,x,x0)

Arguments

Description inty = integrate(fresult,x,x0) integrates the fit result object fresult at 
the values specified by x starting from x0, and returns the result to inty. The 
fresult object is a fit result object generated by the fit function. x is a scalar 
or column vector and inty is the same size as x. x0 is a scalar.

Example Create a noisy sine wave on the interval [-2π, 2π].

rand('state',0);
x = (-2*pi:0.1:2*pi)';
y = sin(x) + (rand(size(x))-0.5)*0.2;

Create a custom fit type, and fit the data using reasonable starting values.

ftype = fittype('a*sin(b*x)');
fit1 = fit(x,y,ftype,'startpoint',[1 1]);

Calculate the integral for each value of x starting at -2*pi

inty = integrate(fit1,x,x(1));

See Also differentiate, cfit, fit, quad

fresult A fit result object.

x The values at which fresult is integrated.

x0 The integration starting point.

inty A vector of integration values.
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4plotPurpose Plot data, fit, prediction bounds, outliers, and residuals

Syntax plot(fresult)
plot(fresult,xdata,ydata)
plot(fresult,xdata,ydata,'s')
plot(fresult,'s1',xdata,ydata,'s2')
plot(fresult,xdata,ydata,outliers)
plot(fresult,xdata,ydata,outliers,'s')
plot(...,'ptype1','ptype2',...)
plot(...,'ptype1','ptype2',...,conflev)
h = plot( )

Arguments

Description plot(fresult) plots the fit result object fresult. fresult is a fit result object 
generated by the fit function.

plot(fresult,xdata,ydata) plots the fit result object, the predictor data 
specified by xdata, and the response data specified by ydata.

plot(fresult,xdata,ydata,'s') plots the predictor and response data using 
the color, symbol, and line type specified by the string s. Refer to the built-in 
plot function for color, symbol, and line type options.

fresult A fit result object.

xdata A column vector of predictor data.

ydata A column vector of response data.

s,s1,s2 The plot symbols, plot colors, and line type.

outliers A vector of outliers.

'ptype' The plot type. You can specify multiple plot types as a cell 
array of strings.

conflev The confidence level.

h A vector of plot handles.
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plot(fresult,'s1',xdata,ydata,'s2') plots the fit result object using the 
color, symbol, and line type specified by the string s1, and plots the predictor 
and response data using the color, symbol, and line type specified by the string 
s2.

plot(fresult,xdata,ydata,outliers) plots the outliers specified by 
outliers in a different color. outliers must be the same size as xdata and 
ydata. You identify data points as outliers with the excludedata function.

plot(fresult,xdata,ydata,outliers,'s') plots the outliers using the color, 
symbol, and line type specified by the string s.

plot(...,'ptype1','ptype2',...) plots the plot types specified by ptype1, 
ptype2, and so on. ptype can be a single plot type or multiple plot types, which 
you can specify as a cell array of strings. For one plot type or none (the default), 
plot behaves like the built-in plot command and draws into the current figure 
and axes. This way, you can use commands like subplot and hold to arrange 
plots in a figure window and to superimpose multiple fits into the same graph. 
For multiple plot types, plot uses subplot to create one set of axes per plot 
type. The supported plot types are given below.

Plot Type Description

fit Plot the data and the fit (default).

predfunc Same as fit but with prediction bounds for the function.

predobs Same as fit but with prediction bounds for a new 
observation.

residuals Plot the residuals. The fit corresponds to the zero line.

stresiduals Plot the standardized residuals. The fit corresponds to the 
zero line. Standardized residuals are the ordinary residuals 
divided by their standard deviation. Standardizing puts all 
residuals on a common scale (units of standard deviations) 
and makes it easier to quantify how far a point is from the 
fitted curve.
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plot(...,'ptype1','ptype2',...,conflev) plots prediction bounds with 
the confidence level specified by conflev. conflev must be between 0 and 1. 
The default value is 0.95 for 95% confidence levels.

h = plot( ) returns a vector of handles to h.

Remarks To plot error bars, use the errorbar function. For example, if you have a vector 
of weights w (reciprocal variances) associated with the response data ydata, you 
can plot symmetric error bars with the following command.

errorbar(xdata,ydata,1./sqrt(w))

Example Create a noisy sine wave on the interval [-2π, 2π] and add two outliers with the 
value 2.

rand('state',2);
x = (-2*pi:0.1:2*pi)';
y = sin(x) + (rand(size(x))-0.5)*0.2;
y(ceil(length(x)*rand(2,1))) = 2;

Identify outliers that are outside the interval [-1.5, 1.5] using the range 
method.

outliers = excludedata(x,y,'range',[-1.5 1.5]);

Create a custom fit type, define fit options that exclude the outliers from the fit 
and define reasonable starting values, and fit the data.

ftype = fittype('a*sin(b*x)');
opts = fitoptions('Method','NonLinear','excl',outliers,...
'Start',[1 1]);
fit1 = fit(x,y,ftype,opts);

Plot the data, the fit to the data, and mark the outliers.

subplot(2,1,1)
plot(fit1,'k-',x,y,'b.',outliers,'ro');
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Plot the residuals.

subplot(2,1,2)
plot(fit1,'k-',x,y,'b.','residuals');
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Plot 99% confidence and prediction bounds for the function and for a new 
observation.

plot(fit1,'k-',x,y,'b.','predfunc','predobs',0.99);

See Also errorbar, plot (built-in), subplot
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4predintPurpose Compute prediction bounds for new observations or for the function

Syntax ci = predint(fresult,x)
ci = predint(fresult,x,level)
ci = predint(fresult,x,level,'intopt','simopt')
[ci,ypred] = predint(...)

Arguments

Description ci = predint(fresult,x) returns prediction bounds for new response 
(observation) values at the predictor values specified by x. The confidence level 
of the predictions is 95%. ci contains the upper and lower prediction bounds. 
fresult is the fit result object returned by the fit function. You can compute 
prediction bounds only for parametric fits. To compute confidence bounds for 
the fitted parameters, use the confint function.

ci = predint(fresult,x,level) returns prediction bounds with a confidence 
level specified by level.

ci = predint(fitresult,x,level,'intopt','simopt') specifies the type of 
bounds to compute. If intopt is functional, the bounds measure the 
uncertainty in estimating the function (the fitted curve). If intopt is 
observation, the bounds are wider to represent the additional uncertainty in 
predicting a new response value (the fitted curve plus random noise).

fresult A fit result object.

x The values at which predictions are calculated.

level Confidence level. The value must be between 0 and 1. The 
default value is 0.95.

'intopt' Can be observation (the default) to compute bounds for new 
response values, or functional to compute bounds for the fit 
evaluated at x.

'simopt' Can be off (the default) to compute nonsimultaneous 
bounds, or on to compute simultaneous bounds.

ci An array of upper and lower prediction bounds.

ypred The predicted (fitted) value of fresult evaluated at x.
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If simopt is off, nonsimultaneous bounds are calculated. If simopt is on, 
simultaneous bounds are calculated. Nonsimultaneous bounds take into 
account only individual x values. Simultaneous bounds take into account all x 
values.

[ci,ypred] = predint(...) returns the predicted (fitted) value of fresult 
evaluated at x.

Example Generate some data and add noise.

x = (0:0.2:10)';
coef = [2 -0.2];
rand('state',0)
y = coef(1)*exp(coef(2)*x) + (rand(size(x))-0.5)*0.5;

Fit the data using a single-term exponential and define the range over which 
prediction bounds are calculated.

fresult = fit(x,y,'exp1');

Return the prediction bounds for the function as well as the predicted values of 
the fit using nonsimultaneous and simultaneous bounds with a 95% confidence 
level. For nonsimultaneous bounds, given a single predetermined predictor 
value, you have 95% confidence that the true function lies between the 
confidence bounds. For simultaneous bounds, you have 95% confidence that the 
function at all predictor values lies between the bounds.

[c1,ypred1] = predint(fresult,x,0.95,'fun','off');
[c2,ypred2] = predint(fresult,x,0.95,'fun','on');

Return the prediction bounds for new observations as well as the predicted 
values of the fit using nonsimultaneous and simultaneous bounds with a 95% 
confidence level. For nonsimultaneous bounds, given a single predictor value, 
you have 95% confidence that a new observation lies between the confidence 
bounds. For simultaneous bounds, regardless of the predictor value, you have 
95% confidence that a new observation lies between the bounds.

[c3,ypred3] = predint(fresult,x,0.95,'obs','off');
[c4,ypred4] = predint(fresult,x,0.95,'obs','on');
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Plot the data, fit, and confidence bounds.

subplot(2,2,1), plot(fresult,x,y), hold on, plot(x,c1,'k-.')
legend('data','fitted curve','prediction bounds')
title('Nonsimultaneous bounds for function')
subplot(2,2,3), plot(fresult,x,y), hold on, plot(x,c2,'k-.')
legend('data','fitted curve','prediction bounds')
title('Simultaneous bounds for function')
subplot(2,2,2), plot(fresult,x,y), hold on; plot(x,c3,'k-.')
legend('data','fitted curve','prediction bounds')
title('Nonsimultaneous bounds for observation')
subplot(2,2,4), plot(fresult,x,y), hold on, plot(x,c4,'k-.')
legend('data','fitted curve','prediction bounds')
title('Simultaneous bounds for observation')

See Also confint, fit
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4setPurpose Configure or display property values for a fit options object

Syntax set(opts)
a = set(opts)
set(opts,'PropertyName',PropertyValue,...)
set(opts,PN,PV)
set(opts,S)

Arguments

Description set(opts) displays all configurable property values for the fit options object 
opts. If a property has a finite list of possible string values, these values are 
also displayed.

a = set(opts) returns all configurable properties and their possible values 
for opts to the structure a. The field names of a are the property names of opts, 
and the field values are cell arrays of possible property values. If the property 
does not have a finite set of possible values, the cell array is empty.

set(opts,'PropertyName',PropertyValue,...) configures multiple 
property values with a single command.

set(opts,PN,PV) configures the properties specified in the cell array of strings 
PN to the corresponding values in the cell array PV. 

set(opts,S) configures the named properties to the specified values for opts. 
The structure S has field names given by the fit options object properties, and 
the field values are the values of the corresponding properties.

opts A fit options object.

'PropertyName' A property name for opts.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.

PV A cell array of property values.

S A structure with property names and property values.

a A structure array whose field names are the property 
names for opts, or cell array of possible values.
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Example Create a custom nonlinear model, and create a default fit options object for the 
model.

mymodel = fittype('a*x^2+b*exp(n*c*x)','prob','n');
opts = fitoptions(mymodel);

Configure the Robust and Normalize properties using property name/property 
value pairs.

set(opts,'Robust','LAR','Normalize','On')

Configure the Display, Lower, and Algorithm properties using cell arrays of 
property names and property values.

set(opts,{'Disp','Low','Alg'},{'Final',[0 0 0],'Levenberg'})

See Also fitoptions, get
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4smoothPurpose Smooth the response data

Syntax yy = smooth(ydata)
yy = smooth(ydata,span)
yy = smooth(ydata,'method')
yy = smooth(ydata,span,'method')
yy = smooth(ydata,'sgolay',degree)
yy = smooth(ydata,span,'sgolay',degree)
yy = smooth(xdata,ydata,...)

Arguments

Description yy = smooth(ydata) smooths the response data specified by ydata using the 
moving average method. The default number of data points in the average (the 
span) is five. yy is the smoothed response data. Note that you need not specify 
the predictor data if it is sorted and uniform.

yy = smooth(ydata,span) uses the number of data points specified by span in 
the moving average calculation. span must be odd.

yy = smooth(ydata,'method') smooths the response data using the method 
specified by method and the default span. The supported smoothing methods 

ydata A column vector of response data.

span The number of data points to include for each smooth 
calculation.

'method' The smoothing method.

'sgolay' Use Savitzky-Golay smoothing.

degree The polynomial degree for the Savitzky-Golay method.

xdata A column vector of predictor data.

yy A vector of smoothed response data.
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are given below. For the Savitzky-Golay method, the default polynomial degree 
is 2.

yy = smooth(ydata,span,'method') smooths data using the specified span 
and method. For the loess and lowess methods, you can specify span as a 
percentage of the total number of data points. In this case, span must be less 
than or equal to 1. For the moving average and Savitzky-Golay methods, span 
must be odd. If an even span is specified, it is reduced by 1.

yy = smooth(ydata,'sgolay',degree) uses the Savitzky-Golay method with 
polynomial degree specified by degree.

yy = smooth(ydata,span,'sgolay',degree) uses the number of data points 
specified by span in the Savitzky-Golay calculation. span must be odd and 
degree must be less than span.

yy = smooth(xdata,ydata,...) smooths the data specified by ydata and the 
associated predictor data, xdata. You should specify the predictor data when it 
is not uniformly spaced or it is not sorted. If xdata is not uniform and you do 
not specify method, lowess is used. If the smoothing method requires xdata to 
be sorted, the sorting occurs automatically.

Method Description

moving Moving average filter.

lowess Locally weighted scatter plot smooth using least squares 
linear polynomial fitting.

loess Locally weighted scatter plot smooth using least squares 
quadratic polynomial fitting.

sgolay Savitzky-Golay filter. Note that the algorithm used by the 
toolbox can accept nonuniform predictor data.

rlowess Lowess smoothing that is resistant to outliers.

rloess Loess smoothing that is resistant to outliers.
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Remarks For the moving average and Savitzky-Golay methods, span must be odd. If an 
even span is specified, it is reduced by 1. If span is greater than the length of 
ydata, it is reduced to the length of ydata.

Use robust smoothing when you want to assign lower weight to outliers. The 
robust smoothing algorithm uses the 6MAD method, which assigns zero weight 
to data outside six mean absolute deviations.

Another way to generate a vector of smoothed response values is to fit your 
data using a smoothing spline. Refer to the fit function for more information.

Example Suppose you want to smooth traffic count data with a moving average filter to 
see the average traffic flow over a 5-hour window (span is 5). 

load count.dat
y = count(:,1);
yy = smooth(y);

Plot the original data and the smoothed data.

t = 1:length(y);
plot(t,y,'r-.',t,yy,'b-')
legend('Original Data','Smoothed Data Using ''moving''',2)
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The first four elements of yy are given by

yy(1) = y(1)
yy(2) = (y(1)+y(2)+y(3))/3
yy(3) = (y(1)+y(2)+y(3)+y(4)+y(5))/5
yy(4) = (y(2)+y(3)+y(4)+y(5)+y(6))/5

Because of the way that the end points are treated, the result shown above 
differs from the result returned by the filter function described in “Difference 
Equations and Filtering” in the MATLAB documentation.

In this example, generate random data between 0 and 15, create a sine wave 
with noise, and add two outliers with the value 3.

rand('state',2);
x = 15*rand(150,1); 
y = sin(x) + (rand(size(x))-0.5)*0.5;
y(ceil(length(x)*rand(2,1))) = 3;

Smooth the data using the loess and rloess methods with the span specified 
as 10% of the data.

yy1 = smooth(x,y,0.1,'loess');
yy2 = smooth(x,y,0.1,'rloess');

Plot original data and the smoothed data. 

[xx,ind] = sort(x);
subplot(2,1,1)
plot(xx,y(ind),'r.',xx,yy1(ind),'k-')
set(gca,'YLim',[-1.5 3.5])
legend('Original Data','Smoothed Data Using ''loess''',2)
subplot(2,1,2)
plot(xx,y(ind),'r.',xx,yy2(ind),'k-')
set(gca,'YLim',[-1.5 3.5])
legend('Original Data','Smoothed Data Using ''rloess''',2)
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Note how the outliers have less effect with the robust method.

See Also fit, sort
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